更改

跳到导航 跳到搜索
添加877字节 、 2021年11月30日 (二) 17:39
第120行: 第120行:  
where <math>j(x)</math> is the "scaling" function and <math>\beta</math> and <math>\delta</math> are two critical-point exponents [3-7].  Thus, from ({{EquationNote|2}}) and ({{EquationNote|7}}), as the critical point is approached <math>(H\rightarrow 0</math> and <math>t\rightarrow 0)\ ,</math> <math>\mid H\mid</math> becomes a homogeneous function of <math>t</math> and <math>\mid M\mid
 
where <math>j(x)</math> is the "scaling" function and <math>\beta</math> and <math>\delta</math> are two critical-point exponents [3-7].  Thus, from ({{EquationNote|2}}) and ({{EquationNote|7}}), as the critical point is approached <math>(H\rightarrow 0</math> and <math>t\rightarrow 0)\ ,</math> <math>\mid H\mid</math> becomes a homogeneous function of <math>t</math> and <math>\mid M\mid
 
^{1/\beta}</math> of degree <math>\beta \delta\ .</math>  The scaling function <math>j(x)</math> vanishes proportionally to <math>x+b</math> as <math>x</math> approaches <math>-b\ ,</math> with <math>b</math> a positive constant; it diverges proportionally to <math>x^{\beta(\delta-1)}</math> as <math>x\rightarrow \infty\ ;</math> and <math>j(0) = c\ ,</math> another positive constant (Fig. 1). Although ({{EquationNote|7}}) is confined to the immediate neighborhood of the critical point <math>(t, M, H</math> all near 0), the scaling variable <math>x = t/\mid M\mid ^{1/\beta}</math> nevertheless traverses the infinite range <math>-b < x < \infty\ .</math>
 
^{1/\beta}</math> of degree <math>\beta \delta\ .</math>  The scaling function <math>j(x)</math> vanishes proportionally to <math>x+b</math> as <math>x</math> approaches <math>-b\ ,</math> with <math>b</math> a positive constant; it diverges proportionally to <math>x^{\beta(\delta-1)}</math> as <math>x\rightarrow \infty\ ;</math> and <math>j(0) = c\ ,</math> another positive constant (Fig. 1). Although ({{EquationNote|7}}) is confined to the immediate neighborhood of the critical point <math>(t, M, H</math> all near 0), the scaling variable <math>x = t/\mid M\mid ^{1/\beta}</math> nevertheless traverses the infinite range <math>-b < x < \infty\ .</math>
 +
 +
其中<math>j(x)</math>是“标度”函数,<math>\beta</math>和<math>\delta</math>是临界点指数。因此由({{EquationNote|2}})和({{EquationNote|7}}),当铁磁物质趋近于临界点时(<math>(H\rightarrow 0</math>且<math>t\rightarrow 0)\ ,</math>),<math>\mid H\mid</math>是<math>t</math>和<math>\mid M\mid
 +
^{1/\beta}</math>的<math>\beta \delta\ .</math>次齐次函数。当<math>x</math>趋近于<math>-b\ ,</math>(正常数)时,标度函数<math>j(x)</math>趋近于零;当<math>x\rightarrow \infty\ ;</math>时,它发散至<math>x^{\beta(\delta-1)}</math>,且<math>j(0) = c\ </math>(正常数)(如图一)。尽管({{EquationNote|7}})局限在临界点<math>(t, M, H</math>都接近零)附近的极小范围内,但标度变量<math>x = t/\mid M\mid ^{1/\beta}</math>却遍历<math>-b < x < \infty\ .</math>的无穷范围。
    
[[Image:scaling_laws_widom_nocaption_Fig1.png|thumb|300px|right|Scaling function  
 
[[Image:scaling_laws_widom_nocaption_Fig1.png|thumb|300px|right|Scaling function  
596

个编辑

导航菜单