第1行: |
第1行: |
− | 此词条由Jie翻译
| + | {{#seo: |
− | 由CecileLi初步审校
| + | |keywords=克劳修斯,热力学系统, |
− | | + | |description=沿着热力学过程路径(从初始/最终状态到相同的初始/最终状态下)运行所得到的闭合积分 |
| + | }} |
| | | |
− | '''克劳修斯定理 Clausius theorem'''(1855)指出,对于'''<font color="#ff8000"> 热力学系统 Thermodynamic system </font>'''(例如,热机或热泵),当其与'''<font color="#ff8000"> 外部热源External reservoirs</font>'''进行热力交换并经历'''<font color="#ff8000"> 热力学循环Thermodynamic cycle</font>'''时, | + | '''克劳修斯定理 Clausius theorem'''(1855)指出,对于[[热力学系统]](例如,热机或热泵),当其与外部热源 External reservoirs进行热力交换并经历[[热力学循环]]时, |
| | | |
| | | |
第9行: |
第10行: |
| | | |
| | | |
− | 其中<math>\delta Q</math>是一个系统从热源吸收的热量无穷小值,<math>T_{\text{surr}}</math>是特定时间点外部热源(周围环境)的温度。该表达式是指,沿着'''<font color="#ff8000"> 热力学过程路径 Thermodynamic process path</font>'''(从初始/最终状态到相同的初始/最终状态下)运行所得到的闭合积分。原则上,该闭合积分可以沿路径的任意点开始和结束。 | + | 其中<math>\delta Q</math>是一个系统从热源吸收的热量无穷小值,<math>T_{\text{surr}}</math>是特定时间点外部热源(周围环境)的温度。该表达式是指,沿着'''热力学过程路径 Thermodynamic process path'''(从初始/最终状态到相同的初始/最终状态下)运行所得到的闭合积分。原则上,该闭合积分可以沿路径的任意点开始和结束。 |
| | | |
| | | |
第18行: |
第19行: |
| | | |
| | | |
− | | + | 特别地,在过程可逆的情况下,该等式成立<ref>[http://scienceworld.wolfram.com/physics/ClausiusTheorem.html '''Clausius theorem'''] at [[Wolfram Research]]</ref> 。由于在循环过程中,状态函数的变化为零,因此其可逆过程可用于引入[[熵]]的状态函数。换而言之,'''克劳修斯表述 Clausius statement'''指出,不可能构造出一种装置,使其仅仅将热从低温热库传递至高温热库而不引起其他变化<ref>Finn, Colin B. P. ''Thermal Physics''. 2nd ed., CRC Press, 1993. </ref>。即,热量只能自发地从高温物体流向相对低温的物体,反之不然。<ref>Giancoli, Douglas C. ''Physics: Principles with Applications''. 6th ed., Pearson/Prentice Hall, 2005. </ref> |
− | 特别地,在过程可逆的情况下,该等式成立<ref>[http://scienceworld.wolfram.com/physics/ClausiusTheorem.html '''Clausius theorem'''] at [[Wolfram Research]]</ref> 。由于在循环过程中,状态函数的变化为零,因此其可逆过程可用于引入'''<font color="#ff8000"> [[熵]] Entropy </font>'''的 '''<font color="#ff8000"> 状态函数State function </font>'''。换而言之,'''<font color="#ff8000"> 克劳修斯表述Clausius statement</font>'''指出,不可能构造出一种装置,使其仅仅将热从低温热库传递至高温热库而不引起其他变化<ref>Finn, Colin B. P. ''Thermal Physics''. 2nd ed., CRC Press, 1993. </ref>。即,热量只能自发地从高温物体流向相对低温的物体,反之不然。<ref>Giancoli, Douglas C. ''Physics: Principles with Applications''. 6th ed., Pearson/Prentice Hall, 2005. </ref> | |
− | | |
− | | |
| | | |
| | | |
第28行: |
第26行: |
| | | |
| :<math>dS_{\text{sys}} \geq \frac{\delta Q}{T_{\text{surr}}} </math> | | :<math>dS_{\text{sys}} \geq \frac{\delta Q}{T_{\text{surr}}} </math> |
− |
| |
| | | |
| | | |
| 对于熵趋近于无穷小变化时,<math>S</math>不仅适用于循环过程,而且适用于封闭系统中发生的任何过程。 | | 对于熵趋近于无穷小变化时,<math>S</math>不仅适用于循环过程,而且适用于封闭系统中发生的任何过程。 |
− |
| |
| | | |
| | | |
| == 历史 == | | == 历史 == |
| | | |
− | | + | 克劳修斯定理是[[热力学第二定律]]的数学解释,由鲁道夫·克劳修斯 Rudolf Clausius提出,他试图解释系统中的热量传递与系统熵及其周围环境之间的关系。当时他为了解释熵并定量表示熵,而逐步推导出了该公式。显然,该定理为我们提供了一种确定热循环过程是否可逆的方法,同时也为我们理解热力学第二定律提供了一个定量公式。 |
− | | |
− | | |
− | 克劳修斯定理是'''<font color="#ff8000"> [[热力学第二定律]] Second law of thermodynamics</font>'''的数学解释,由鲁道夫·克劳修斯 Rudolf Clausius提出,他试图解释系统中的热量传递与系统熵及其周围环境之间的关系。当时他为了解释熵并定量表示熵,而逐步推导出了该公式。显然,该定理为我们提供了一种确定热循环过程是否可逆的方法,同时也为我们理解热力学第二定律提供了一个定量公式。 | |
− | | |
− | | |
| | | |
| | | |
第55行: |
第46行: |
| | | |
| :<math>\oint \frac{\delta Q}{T_{surr}} \leq 0</math> | | :<math>\oint \frac{\delta Q}{T_{surr}} \leq 0</math> |
− |
| |
− |
| |
| | | |
| | | |
第63行: |
第52行: |
| | | |
| :<math>\Delta S {{=}} \oint \frac{\delta Q}{T}</math> | | :<math>\Delta S {{=}} \oint \frac{\delta Q}{T}</math> |
− |
| |
| | | |
| | | |
第69行: |
第57行: |
| | | |
| | | |
| + | 循环过程中,如果能测量出因加热而增加的能量和其温度,那么通过对克劳修斯不等式进行积分,就能确定其过程是否可逆。 |
| | | |
− | 循环过程中,如果能测量出因加热而增加的能量和其温度,那么通过对克劳修斯不等式进行积分,就能确定其过程是否可逆。
| |
| | | |
| == 证明 == | | == 证明 == |
− |
| |
− |
| |
| 对克劳修斯不等式进行积分,其被积函数分母上的温度实际上是系统与之交换热量的外部热源的温度。注意热量传递过程的每个瞬间,系统都是与外部热源接触的。 | | 对克劳修斯不等式进行积分,其被积函数分母上的温度实际上是系统与之交换热量的外部热源的温度。注意热量传递过程的每个瞬间,系统都是与外部热源接触的。 |
− |
| |
| | | |
| | | |
第83行: |
第68行: |
| | | |
| 当系统吸收了一个无穷小的热量<math>\delta Q_{1}</math>(<math>\geq 0</math>)时,为了使此过程中的熵<math>dS_{Total_{1}}</math>的净变量为正,“热”源<math>T_{Hot}</math>的温度必须稍大于该时刻的系统温度。 | | 当系统吸收了一个无穷小的热量<math>\delta Q_{1}</math>(<math>\geq 0</math>)时,为了使此过程中的熵<math>dS_{Total_{1}}</math>的净变量为正,“热”源<math>T_{Hot}</math>的温度必须稍大于该时刻的系统温度。 |
− |
| |
| | | |
| | | |
第93行: |
第77行: |
| | | |
| 这意味着来自热源的熵“损耗”的大小,即<math> |dS_{Res_{1}}|=\frac{\delta Q_{1}}{T_{Hot}} </math>小于了系统熵增加的大小<math>dS_{Sys_{1}}</math>(<math>\geq 0</math>): | | 这意味着来自热源的熵“损耗”的大小,即<math> |dS_{Res_{1}}|=\frac{\delta Q_{1}}{T_{Hot}} </math>小于了系统熵增加的大小<math>dS_{Sys_{1}}</math>(<math>\geq 0</math>): |
− |
| |
| | | |
| | | |
第103行: |
第86行: |
| | | |
| 这里假定该系统“吸收”的热量为<math>\delta Q_{2}</math>(<math>\leq 0</math>),表示热量从系统传递到热库,且<math>dS_{Sys_{2}}\leq 0</math>。由热库获得的熵大小<math> dS_{Res_{2}}=\frac{|\delta Q_{2}|}{T_{cold}}</math>,大于系统熵损失的大小<math> |dS_{Sys_{2}}|</math>。 | | 这里假定该系统“吸收”的热量为<math>\delta Q_{2}</math>(<math>\leq 0</math>),表示热量从系统传递到热库,且<math>dS_{Sys_{2}}\leq 0</math>。由热库获得的熵大小<math> dS_{Res_{2}}=\frac{|\delta Q_{2}|}{T_{cold}}</math>,大于系统熵损失的大小<math> |dS_{Sys_{2}}|</math>。 |
− |
| |
− |
| |
| | | |
| | | |
第130行: |
第111行: |
| | | |
| :<math>\oint dS_{Total}=\oint dS_{Res}+\oint dS_{Sys}\geq 0</math> | | :<math>\oint dS_{Total}=\oint dS_{Res}+\oint dS_{Sys}\geq 0</math> |
− |
| |
| | | |
| | | |
第137行: |
第117行: |
| | | |
| :<math>\oint \frac{\delta Q_{rev}}{T}=0. </math> | | :<math>\oint \frac{\delta Q_{rev}}{T}=0. </math> |
− |
| |
| | | |
| | | |
| 所以,克劳修斯不等式是基于热力学第二定律并应用在热传递过程中每个无穷小阶段的结果,从某种意义上说,它是热力学第二定律的弱条件。 | | 所以,克劳修斯不等式是基于热力学第二定律并应用在热传递过程中每个无穷小阶段的结果,从某种意义上说,它是热力学第二定律的弱条件。 |
| | | |
− | == See also 另请参见 ==
| |
− |
| |
− | * [[Kelvin-Planck statement]]
| |
− |
| |
− | * [[Carnot's theorem (thermodynamics)]]
| |
− |
| |
− | * [[Carnot heat engine]]
| |
− |
| |
− | * [[Introduction to entropy]]
| |
| | | |
| + | ==另见 == |
| + | * [[开尔文-普朗克表述]] Kelvin-Planck statement |
| + | * [[卡诺定理(热力学)]] Carnot's theorem (thermodynamics) |
| + | * [[卡诺热机]] Carnot heat engine |
| + | * [[熵的介绍]] Introduction to entropy |
| | | |
− | * '''<font color="#ff8000"> 开尔文-普朗克表述Kelvin-Planck statement </font>'''
| |
− | * '''<font color="#ff8000"> 卡诺定理(热力学)Carnot's theorem (thermodynamics </font>''')
| |
− | * '''<font color="#ff8000"> 卡诺热机Carnot heat engine </font>'''
| |
− | * '''<font color="#ff8000"> 熵的介绍Introduction to entropy </font>'''
| |
| | | |
− | == References 参考文献 == | + | ==参考文献 == |
| | | |
| {{reflist}} | | {{reflist}} |
| | | |
− | {{refbegin}}
| |
− |
| |
− |
| |
− |
| |
− | == Further reading 拓展阅读==
| |
| | | |
| + | == 拓展阅读== |
| *Morton, A. S., and P.J. Beckett. ''Basic Thermodynamics''. New York: Philosophical Library Inc., 1969. Print. | | *Morton, A. S., and P.J. Beckett. ''Basic Thermodynamics''. New York: Philosophical Library Inc., 1969. Print. |
− |
| |
| *Saad, Michel A. ''Thermodynamics for Engineers''. Englewood Cliffs: Prentice-Hall, 1966. Print. | | *Saad, Michel A. ''Thermodynamics for Engineers''. Englewood Cliffs: Prentice-Hall, 1966. Print. |
− |
| |
| *Hsieh, Jui Sheng. ''Principles of Thermodynamics''. Washington, D.C.: Scripta Book Company, 1975. Print. | | *Hsieh, Jui Sheng. ''Principles of Thermodynamics''. Washington, D.C.: Scripta Book Company, 1975. Print. |
− |
| |
| *Zemansky, Mark W. ''Heat and Thermodynamics''. 4th ed. New York: McGwaw-Hill Book Company, 1957. Print. | | *Zemansky, Mark W. ''Heat and Thermodynamics''. 4th ed. New York: McGwaw-Hill Book Company, 1957. Print. |
− |
| |
| *Clausius, Rudolf. ''The Mechanical Theory of Heat''. London: Taylor and Francis, 1867. eBook | | *Clausius, Rudolf. ''The Mechanical Theory of Heat''. London: Taylor and Francis, 1867. eBook |
| | | |
| | | |
− | *Morton, A. S., and P.J. Beckett. '' '''<font color="#ff8000"> 热力学基础 Basic Thermodynamics </font>''' ''. New York: Philosophical Library Inc., 1969. Print.
| + | == 相关链接 == |
− | *Saad, Michel A. '' '''<font color="#ff8000"> 工程热力学 Thermodynamics for Engineers </font>''' ''. Englewood Cliffs: Prentice-Hall, 1966. Print.
| |
− | *Hsieh, Jui Sheng. '' '''<font color="#ff8000"> 热力学原理Principles of Thermodynamics </font>''' ''. Washington, D.C.: Scripta Book Company, 1975. Print.
| |
− | *Zemansky, Mark W. '' '''<font color="#ff8000"> 热与热力学Heat and Thermodynamics </font>''' ''. 4th ed. New York: McGwaw-Hill Book Company, 1957. Print.
| |
− | *Clausius, Rudolf. '' '''<font color="#ff8000"> 热力学理论The Mechanical Theory of Heat </font>''' ''. London: Taylor and Francis, 1867. eBook
| |
− | | |
− | | |
− | {{refend}}
| |
− | | |
− | | |
− | | |
− | == External links 相关链接 ==
| |
| | | |
| *{{cite web|title=Proof of Clausius's theorem|url=http://theory.ph.man.ac.uk/~judith/stat_therm/node30.html|accessdate=October 4, 2010|author=Judith McGovern|date=2004-03-17|archive-url=https://web.archive.org/web/20110719052220/http://theory.ph.man.ac.uk/~judith/stat_therm/node30.html|archive-date=July 19, 2011|url-status=dead}} | | *{{cite web|title=Proof of Clausius's theorem|url=http://theory.ph.man.ac.uk/~judith/stat_therm/node30.html|accessdate=October 4, 2010|author=Judith McGovern|date=2004-03-17|archive-url=https://web.archive.org/web/20110719052220/http://theory.ph.man.ac.uk/~judith/stat_therm/node30.html|archive-date=July 19, 2011|url-status=dead}} |
第206行: |
第158行: |
| | | |
| | | |
− | {{DEFAULTSORT:Clausius Theorem}}
| |
| | | |
− | [[Category:Laws of thermodynamics]] | + | [[Category:热力学定律]] |
| + | [[Category:物理学定理]] |
| | | |
− | Category:Laws of thermodynamics
| |
| | | |
− | 类别: 热力学定律
| + | 此词条由Jie翻译 |
− | | + | 由CecileLi初步审校 |
− | [[Category:Physics theorems]]
| |
− | | |
− | Category:Physics theorems
| |
− | | |
− | 范畴: 物理学定理
| |
| | | |
− | <noinclude>
| |
| | | |
| <small>This page was moved from [[wikipedia:en:Clausius theorem]]. Its edit history can be viewed at [[熵增原理/edithistory]]</small></noinclude> | | <small>This page was moved from [[wikipedia:en:Clausius theorem]]. Its edit history can be viewed at [[熵增原理/edithistory]]</small></noinclude> |