第1行: |
第1行: |
| + | {{#seo: |
| + | |keywords=科学,新兴领域 |
| + | |description=是研究科学以及一切关于科学的对象的科学 |
| + | }} |
| | | |
| [[File:ssci1.jpg|330px|left|thumb|upright=3|科学可以被视为一个不断扩大和演化的思想、学者和论文网络。科学学探寻基于科学结构和动态的普遍或特定领域的普世规律。]] | | [[File:ssci1.jpg|330px|left|thumb|upright=3|科学可以被视为一个不断扩大和演化的思想、学者和论文网络。科学学探寻基于科学结构和动态的普遍或特定领域的普世规律。]] |
第31行: |
第35行: |
| * Thomas Kuhn | | * Thomas Kuhn |
| * Ying Ding | | * Ying Ding |
| + | |
| | | |
| ==起源== | | ==起源== |
第52行: |
第57行: |
| | | |
| 总之,最革新的科学是基于传统的学科组合,但是这种组合往往是前所未有的。最后,随着研究工作更多的从个体转移到团队中,科学学越来越关注团队在科研中的影响和意义。一些研究发现有革命性的思想通常诞生于小团队。相比之下,大型团队倾向于推进前沿领域的研究,获得高却通常也短暂的影响力。 | | 总之,最革新的科学是基于传统的学科组合,但是这种组合往往是前所未有的。最后,随着研究工作更多的从个体转移到团队中,科学学越来越关注团队在科研中的影响和意义。一些研究发现有革命性的思想通常诞生于小团队。相比之下,大型团队倾向于推进前沿领域的研究,获得高却通常也短暂的影响力。 |
| + | |
| | | |
| ==展望== | | ==展望== |
第62行: |
第68行: |
| | | |
| 尽管科学研究确实有它的普遍性,但文化、习惯和偏好方面的实质性学科背景差异使得某些领域内的某些跨领域见解变得难以理解,与其对应的政策则难以实施。每个学科所要求的问题、数据和技能之间的差异表明,可以从特定领域的科学学研究中获得进一步的见解。这些研究模拟和预测适应每个学科领域中的需求和机会。对于年轻的科学家来说,科学学的研究结果提供了过去科研有效的见解,有助于指导他们对未来的预见. | | 尽管科学研究确实有它的普遍性,但文化、习惯和偏好方面的实质性学科背景差异使得某些领域内的某些跨领域见解变得难以理解,与其对应的政策则难以实施。每个学科所要求的问题、数据和技能之间的差异表明,可以从特定领域的科学学研究中获得进一步的见解。这些研究模拟和预测适应每个学科领域中的需求和机会。对于年轻的科学家来说,科学学的研究结果提供了过去科研有效的见解,有助于指导他们对未来的预见. |
| + | |
| | | |
| ===科学学告诉我们=== | | ===科学学告诉我们=== |
第69行: |
第76行: |
| *声誉:大多数名誉将归属于在文献发表的领域中进行始终如一工作的共同作者。 | | *声誉:大多数名誉将归属于在文献发表的领域中进行始终如一工作的共同作者。 |
| *资金:虽然评审小组承诺支持创新,但他们实际上更倾向于忽视创新。资助机构应要求审稿人评估创新,而不仅仅是他们头脑中预料的成功。 | | *资金:虽然评审小组承诺支持创新,但他们实际上更倾向于忽视创新。资助机构应要求审稿人评估创新,而不仅仅是他们头脑中预料的成功。 |
| + | |
| | | |
| ===科学学的贡献=== | | ===科学学的贡献=== |
第91行: |
第99行: |
| 科学学试图解决的一个问题是科学资金的分配。目前的同行评审制度存在偏见和矛盾。几种替代方案已经被提出,例如随机分配资金,不涉及提案和审查制度的向专门人员导向的资金,向在线人群开放的审查机制,去除审稿人绩效的评审机制和科学家众筹资金。 | | 科学学试图解决的一个问题是科学资金的分配。目前的同行评审制度存在偏见和矛盾。几种替代方案已经被提出,例如随机分配资金,不涉及提案和审查制度的向专门人员导向的资金,向在线人群开放的审查机制,去除审稿人绩效的评审机制和科学家众筹资金。 |
| 科学学未来研究的一个关键领域是与机器学习和人工智能的整合,让客观的机器和人类一起工作。这些新工具将会有一个令人愉快的深远,因为机器可能比人类合作者更能拓宽科学家的视野。例如,自动驾驶车辆是机器学习技术,是由人类已知的驾驶技术和未知的驾驶习惯信息的成功组合。心智-机器伙伴关系的研究给广泛的卫生、经济、社会、法律等领域的决策上提供了广泛的正面作用。如何通过机器与心灵关系改善科学,以及怎么安排能够让科学发展更具成效?这些问题有助于我们了解未来的科学。 | | 科学学未来研究的一个关键领域是与机器学习和人工智能的整合,让客观的机器和人类一起工作。这些新工具将会有一个令人愉快的深远,因为机器可能比人类合作者更能拓宽科学家的视野。例如,自动驾驶车辆是机器学习技术,是由人类已知的驾驶技术和未知的驾驶习惯信息的成功组合。心智-机器伙伴关系的研究给广泛的卫生、经济、社会、法律等领域的决策上提供了广泛的正面作用。如何通过机器与心灵关系改善科学,以及怎么安排能够让科学发展更具成效?这些问题有助于我们了解未来的科学。 |
| + | |
| | | |
| ==科学== | | ==科学== |
− |
| |
| ===什么是科学=== | | ===什么是科学=== |
| “科学”一词,来自拉丁语'''''scientia''''',意味着知识,在不同的语言中有不同的侧重点。在英语中,通常意义上的“科学”指的是精确科学,自然科学或硬科学。<ref>Michael Shermer, "''Scientia Humanitatis'': Reason, empiricism and skepticism are not virtues of science alone", ''Scientific American'', vol. 312, no. 6 (June 2015), p. 80.</ref> 而在其他语言中(如法语、德语或者波兰语),相应术语指的是更广泛的领域,不仅包括精确的科学(逻辑和数学),还包括自然科学(物理,化学,生物学,医学,地球科学,地理学) ,天文学等),还包括工程科学,社会科学(历史,地理,心理学,自然人类学,社会学,政治学,经济学,国际关系,教育学等)和人文科学(哲学,历史,文化人类学,语言学等)。<ref name="Scientia Humanitatis' 2015 p. 80">Michael Shermer, "''Scientia Humanitatis''", ''Scientific American'', vol. 312, no. 6 (June 2015), p. 80.</ref> | | “科学”一词,来自拉丁语'''''scientia''''',意味着知识,在不同的语言中有不同的侧重点。在英语中,通常意义上的“科学”指的是精确科学,自然科学或硬科学。<ref>Michael Shermer, "''Scientia Humanitatis'': Reason, empiricism and skepticism are not virtues of science alone", ''Scientific American'', vol. 312, no. 6 (June 2015), p. 80.</ref> 而在其他语言中(如法语、德语或者波兰语),相应术语指的是更广泛的领域,不仅包括精确的科学(逻辑和数学),还包括自然科学(物理,化学,生物学,医学,地球科学,地理学) ,天文学等),还包括工程科学,社会科学(历史,地理,心理学,自然人类学,社会学,政治学,经济学,国际关系,教育学等)和人文科学(哲学,历史,文化人类学,语言学等)。<ref name="Scientia Humanitatis' 2015 p. 80">Michael Shermer, "''Scientia Humanitatis''", ''Scientific American'', vol. 312, no. 6 (June 2015), p. 80.</ref> |
第103行: |
第111行: |
| | | |
| 研究者们通过大规模的文本分析,使用从标题和摘要中提取的短语来衡量科学文献的认知程度。他们发现科学概念的范围随着时间的推移而线性扩展。换句话说,虽然发表文章的数量呈指数增长,但新概念是随着时间的推移是以线性增加的。 | | 研究者们通过大规模的文本分析,使用从标题和摘要中提取的短语来衡量科学文献的认知程度。他们发现科学概念的范围随着时间的推移而线性扩展。换句话说,虽然发表文章的数量呈指数增长,但新概念是随着时间的推移是以线性增加的。 |
− |
| |
| | | |
| [[File:scii2.jpg|980px|right|thumb|upright=3|科学的成长。(A)在WoS数据库中摘录文献的年度产出量与时间的关系。(B)WoS中索引到的文献涵盖的科学新发现的增长。这是通过计算固定数量文章中概念数量来确定的]] | | [[File:scii2.jpg|980px|right|thumb|upright=3|科学的成长。(A)在WoS数据库中摘录文献的年度产出量与时间的关系。(B)WoS中索引到的文献涵盖的科学新发现的增长。这是通过计算固定数量文章中概念数量来确定的]] |
− |
| |
− |
| |
| | | |
| 文章标题和摘要中常用的单词和短语通过引文网络传播,形成一种模式,而这种模式又会在某一时空被新出现的范式所取代。通过将网络科学方法应用到引文网络中进行研究,研究人员能够识别由经常互相引用的发表文章子集所对应的社群。这些社群通常对应于对特定问题持有共同立场的作者群体或在相同的专门科学话题上工作的从业者。最近,关注生物医学科学工作的一篇文章说明了发表物的增长如何强化了“学科社区”。 | | 文章标题和摘要中常用的单词和短语通过引文网络传播,形成一种模式,而这种模式又会在某一时空被新出现的范式所取代。通过将网络科学方法应用到引文网络中进行研究,研究人员能够识别由经常互相引用的发表文章子集所对应的社群。这些社群通常对应于对特定问题持有共同立场的作者群体或在相同的专门科学话题上工作的从业者。最近,关注生物医学科学工作的一篇文章说明了发表物的增长如何强化了“学科社区”。 |
第116行: |
第121行: |
| | | |
| 对八个研究领域的生命周期分析表明,成功的领域经历了知识和社交统一的过程,这导致协作网络中的巨大通路,可以类比正常条件下相当大的一组共同作者。一个科学家在合作网络上'''随机游走 random walks''' 选择合作者的数学模型成功地再现了作者生产力、每个学科的作者数量和论文内容与作者的跨学科性。 | | 对八个研究领域的生命周期分析表明,成功的领域经历了知识和社交统一的过程,这导致协作网络中的巨大通路,可以类比正常条件下相当大的一组共同作者。一个科学家在合作网络上'''随机游走 random walks''' 选择合作者的数学模型成功地再现了作者生产力、每个学科的作者数量和论文内容与作者的跨学科性。 |
| + | |
| | | |
| ===什么可以被科学认知的=== | | ===什么可以被科学认知的=== |
第128行: |
第134行: |
| 格莱泽(Gleiser)给出了另外三个关于宇宙起源的未知例子。生活和思想:<ref name="ReferenceA"/> | | 格莱泽(Gleiser)给出了另外三个关于宇宙起源的未知例子。生活和思想:<ref name="ReferenceA"/> |
| “对宇宙起源的科学描述是不完整的,因为它们必须依靠一个概念框架才能开始起作用:例如,能量守恒,相对论,量子物理学。为什么宇宙要遵循这些定律而不是其他定律?“类似地,除非我们能证明从非生命到生命只有一种或很少的生化途径存在,否则我们无法确定生命是如何起源于地球的。“对于意识,问题是从物质到主观的跳跃,例如,从激发神经元到痛苦或红色的体验。也许某种基本的意识可以在足够复杂的机器中出现。但是我们怎么能相对于猜想,我们如何确定某种事物是有意识的?” 格莱塞写道,自相矛盾的是,通过我们的意识,即使不完美,我们也能理解世界。 “我们能完全理解我们所参与的某些事情吗?<ref>Herbert Spencer, ''First Principles'' (1862), part I: "The Unknowable", chapter IV: "The Relativity of All Knowledge".</ref> | | “对宇宙起源的科学描述是不完整的,因为它们必须依靠一个概念框架才能开始起作用:例如,能量守恒,相对论,量子物理学。为什么宇宙要遵循这些定律而不是其他定律?“类似地,除非我们能证明从非生命到生命只有一种或很少的生化途径存在,否则我们无法确定生命是如何起源于地球的。“对于意识,问题是从物质到主观的跳跃,例如,从激发神经元到痛苦或红色的体验。也许某种基本的意识可以在足够复杂的机器中出现。但是我们怎么能相对于猜想,我们如何确定某种事物是有意识的?” 格莱塞写道,自相矛盾的是,通过我们的意识,即使不完美,我们也能理解世界。 “我们能完全理解我们所参与的某些事情吗?<ref>Herbert Spencer, ''First Principles'' (1862), part I: "The Unknowable", chapter IV: "The Relativity of All Knowledge".</ref> |
| + | |
| | | |
| ===事实和理论=== | | ===事实和理论=== |
第135行: |
第142行: |
| | | |
| 查尔斯·达尔文(Charles Darwin)用自然选择遗传变异的理论解释了生命的进化,但他相信融合遗传的理论使新变异的传播成为不可能。[18]他从未读过格雷戈尔·孟德尔(Gregor Mendel)的研究,该研究表明,当将继承视为随机过程时,继承律将变得简单。尽管达尔文在1866年进行了与孟德尔相同的实验,但达尔文未能获得可比的结果,因为他无法理解使用非常大的实验样本的统计重要性。最终,孟德尔式的随机变异遗传将为达尔文式的选择工作提供基础。<ref>Freeman Dyson, "The Case for Blunders", ''The New York Review of Books'', vol. LXI, no. 4 (March 6, 2014), pp. 6, 8.</ref> | | 查尔斯·达尔文(Charles Darwin)用自然选择遗传变异的理论解释了生命的进化,但他相信融合遗传的理论使新变异的传播成为不可能。[18]他从未读过格雷戈尔·孟德尔(Gregor Mendel)的研究,该研究表明,当将继承视为随机过程时,继承律将变得简单。尽管达尔文在1866年进行了与孟德尔相同的实验,但达尔文未能获得可比的结果,因为他无法理解使用非常大的实验样本的统计重要性。最终,孟德尔式的随机变异遗传将为达尔文式的选择工作提供基础。<ref>Freeman Dyson, "The Case for Blunders", ''The New York Review of Books'', vol. LXI, no. 4 (March 6, 2014), pp. 6, 8.</ref> |
− |
| |
| | | |
| 威廉·汤姆森(开尔文勋爵)发现了能量和热的基本定律,然后使用这些定律来计算地球年龄的估计值,该估计值太短了五十倍。他的计算基于以下信念:地球的地幔是固体,只有通过传导才能将热量从内部传递到表面。现已知道,地幔部分为流体,并通过对流更为有效的对流过程传递大部分热量,对流过程通过向上移动的热岩石和向下移动的较冷岩石的大量循环来传递热量。开尔文(Kelvin)可以看到火山的爆发将热液体从地下深处带到地面;但是他的计算能力使他看不到无法计算的火山喷发等过程。<ref name="LXI 2014 p. 4"/> | | 威廉·汤姆森(开尔文勋爵)发现了能量和热的基本定律,然后使用这些定律来计算地球年龄的估计值,该估计值太短了五十倍。他的计算基于以下信念:地球的地幔是固体,只有通过传导才能将热量从内部传递到表面。现已知道,地幔部分为流体,并通过对流更为有效的对流过程传递大部分热量,对流过程通过向上移动的热岩石和向下移动的较冷岩石的大量循环来传递热量。开尔文(Kelvin)可以看到火山的爆发将热液体从地下深处带到地面;但是他的计算能力使他看不到无法计算的火山喷发等过程。<ref name="LXI 2014 p. 4"/> |
第146行: |
第152行: |
| | | |
| 在马里奥·利维奥(Mario Livio)的五个科学家失误的例子中,戴森(Dyson)添加了第六个:他自己。戴森根据理论原理得出的结论是,不存在被称为W粒子(带电的弱玻色子)的东西。后来在日内瓦CERN进行的一项实验证明了他的错。 “事后看来,我能看到为什么我的稳定性论点不适用于W粒子的几个原因。[它们]太大且寿命太短,无法构成类似于普通物质的任何成分。”<ref>Freeman Dyson, "The Case for Blunders", ''The New York Review of Books'', vol. LXI, no. 4 (March 6, 2014), p. 8.</ref> | | 在马里奥·利维奥(Mario Livio)的五个科学家失误的例子中,戴森(Dyson)添加了第六个:他自己。戴森根据理论原理得出的结论是,不存在被称为W粒子(带电的弱玻色子)的东西。后来在日内瓦CERN进行的一项实验证明了他的错。 “事后看来,我能看到为什么我的稳定性论点不适用于W粒子的几个原因。[它们]太大且寿命太短,无法构成类似于普通物质的任何成分。”<ref>Freeman Dyson, "The Case for Blunders", ''The New York Review of Books'', vol. LXI, no. 4 (March 6, 2014), p. 8.</ref> |
| + | |
| | | |
| ===经验主义=== | | ===经验主义=== |
第172行: |
第179行: |
| | | |
| 大约两个世纪之后,在1915年,阿尔伯特·爱因斯坦的广义相对论中发现了对牛顿万有引力定律的更深层解释:万有引力可以解释为物质和能量的存在引起的时空曲率的一种表现。温伯格写道,像牛顿理论这样的成功理论可能会因其创造者不理解的原因而起作用-更深层次的理论后来会揭示出一些原因。科学进步不是在理性的基础上建立理论的问题,而是在更简单,更普遍的原则下统一更大范围的现象的问题。<ref name="Jim Holt 2015 p. 54"/> | | 大约两个世纪之后,在1915年,阿尔伯特·爱因斯坦的广义相对论中发现了对牛顿万有引力定律的更深层解释:万有引力可以解释为物质和能量的存在引起的时空曲率的一种表现。温伯格写道,像牛顿理论这样的成功理论可能会因其创造者不理解的原因而起作用-更深层次的理论后来会揭示出一些原因。科学进步不是在理性的基础上建立理论的问题,而是在更简单,更普遍的原则下统一更大范围的现象的问题。<ref name="Jim Holt 2015 p. 54"/> |
| + | |
| | | |
| ===人工智能可以重新定义科学吗=== | | ===人工智能可以重新定义科学吗=== |
第194行: |
第202行: |
| | | |
| 人类可能无法将其在科学,技术和文化方面的创造性努力外包给机器。 | | 人类可能无法将其在科学,技术和文化方面的创造性努力外包给机器。 |
| + | |
| | | |
| ===科学的不确定性=== | | ===科学的不确定性=== |
第211行: |
第220行: |
| | | |
| 越来越多地关注开放科学的原理,例如发表更详细的研究方案,并要求作者遵循预先指定的分析计划,并在其偏离计划时进行报告。<ref name="Lydia Denworth pp. 62"/> | | 越来越多地关注开放科学的原理,例如发表更详细的研究方案,并要求作者遵循预先指定的分析计划,并在其偏离计划时进行报告。<ref name="Lydia Denworth pp. 62"/> |
| + | |
| | | |
| ==发现== | | ==发现== |
− |
| |
| ===发现和发明=== | | ===发现和发明=== |
| 在弗洛里安·扎纳涅基(Florian Znaniecki)发表他的1923年论文(提议创建一个研究科学领域的实证研究领域)之前的五十年,亚历山大·格沃瓦奇(AleksanderGłowacki,以他的笔名BolesławPrus出名)提出了相同的建议。在1873年的公开演讲“关于发现与发明”中,<ref>Bolesław Prus, ''On Discoveries and Inventions: A Public Lecture Delivered on 23 March 1873 by Aleksander Głowacki [Bolesław Prus]'', Passed by the [Russian] Censor (Warsaw, 21 April 1873), Warsaw, Printed by F. Krokoszyńska, 1873. http://www.gutenberg.org/files/30407/30407-h/30407-h.htm</ref> 普鲁斯说: | | 在弗洛里安·扎纳涅基(Florian Znaniecki)发表他的1923年论文(提议创建一个研究科学领域的实证研究领域)之前的五十年,亚历山大·格沃瓦奇(AleksanderGłowacki,以他的笔名BolesławPrus出名)提出了相同的建议。在1873年的公开演讲“关于发现与发明”中,<ref>Bolesław Prus, ''On Discoveries and Inventions: A Public Lecture Delivered on 23 March 1873 by Aleksander Głowacki [Bolesław Prus]'', Passed by the [Russian] Censor (Warsaw, 21 April 1873), Warsaw, Printed by F. Krokoszyńska, 1873. http://www.gutenberg.org/files/30407/30407-h/30407-h.htm</ref> 普鲁斯说: |
第225行: |
第234行: |
| | | |
| 但是,普鲁斯问道:“是什么力量驱使[调查人员]辛劳而又常常令人沮丧的努力?这些人将通过什么线索来探索迄今为止尚未探索的研究领域?”普鲁斯(Prus)认为,随着时间的流逝,发现和发明的增加改善了人们的生活质量并扩大了人们的知识水平。 “文明社会的这种逐步进步,对自然界中存在物体的知识的不断增长,工具和有用材料的不断增长,被称为进步或文明的增长。” 相反,普鲁斯警告说:“不发明或不知道如何使用发明的社会和人民,过着悲惨的生活,最终灭亡。” <ref name="autogenerated17"/> | | 但是,普鲁斯问道:“是什么力量驱使[调查人员]辛劳而又常常令人沮丧的努力?这些人将通过什么线索来探索迄今为止尚未探索的研究领域?”普鲁斯(Prus)认为,随着时间的流逝,发现和发明的增加改善了人们的生活质量并扩大了人们的知识水平。 “文明社会的这种逐步进步,对自然界中存在物体的知识的不断增长,工具和有用材料的不断增长,被称为进步或文明的增长。” 相反,普鲁斯警告说:“不发明或不知道如何使用发明的社会和人民,过着悲惨的生活,最终灭亡。” <ref name="autogenerated17"/> |
| + | |
| | | |
| ===科学的可重复性=== | | ===科学的可重复性=== |
第245行: |
第255行: |
| | | |
| William S. Hummers和Richard E Offeman,“石墨氧化物的制备”,《美国化学学会杂志》,第1卷。 80号6(1958年3月20日),第2页。 1339年,引入了悍马方法,这是一种制造氧化石墨的技术。最近对石墨烯潜力的关注使1958年的论文受到关注。氧化石墨可以作为二维材料的可靠中间体。<ref name="Amber Williams 2016 p. 80"/> | | William S. Hummers和Richard E Offeman,“石墨氧化物的制备”,《美国化学学会杂志》,第1卷。 80号6(1958年3月20日),第2页。 1339年,引入了悍马方法,这是一种制造氧化石墨的技术。最近对石墨烯潜力的关注使1958年的论文受到关注。氧化石墨可以作为二维材料的可靠中间体。<ref name="Amber Williams 2016 p. 80"/> |
| + | |
| | | |
| ===多重独立发现=== | | ===多重独立发现=== |
第255行: |
第266行: |
| | | |
| 可以将多重独立发现和发明的现象看作是BolesławPrus的渐进,依赖和组合三个定律的结果(请参见上文的“发现与发明”)。反过来,前两个定律可以看作是第三定律的推论,因为渐进定律和依赖定律意味着在必须结合某些理论,事实或技术的情况下,某些科学或技术的进步是不可能的。产生特定的科学或技术进步。 | | 可以将多重独立发现和发明的现象看作是BolesławPrus的渐进,依赖和组合三个定律的结果(请参见上文的“发现与发明”)。反过来,前两个定律可以看作是第三定律的推论,因为渐进定律和依赖定律意味着在必须结合某些理论,事实或技术的情况下,某些科学或技术的进步是不可能的。产生特定的科学或技术进步。 |
| + | |
| | | |
| ===技术=== | | ===技术=== |
第260行: |
第272行: |
| | | |
| 技术是用于生产商品或服务或实现目标(例如科学研究)的技术,技能,方法和过程的总和。自相矛盾的是,有时人们认为,如此构想的技术占据了最终地位,甚至损害了他们的利益。劳拉·格雷戈(Laura Grego)和戴维·赖特(David Wright)在2019年《科学美国人》杂志上写道,观察到:“当前的美国导弹防御计划主要是由技术,政治和恐惧所驱动。导弹防御将无法使我们摆脱对核武器的脆弱性。事态发展将阻止进一步削减核武库,并可能刺激新的部署,从而为采取实际措施降低核风险创造了障碍。”<ref>Laura Grego and David Wright, "Broken Shield: Missiles designed to destroy incoming nuclear warheads fail frequently in tests and could increase global risk of mass destruction", ''Scientific American'', vol. 320, no. no. 6 (June 2019), pp. 62–67. (p. 67.)</ref> | | 技术是用于生产商品或服务或实现目标(例如科学研究)的技术,技能,方法和过程的总和。自相矛盾的是,有时人们认为,如此构想的技术占据了最终地位,甚至损害了他们的利益。劳拉·格雷戈(Laura Grego)和戴维·赖特(David Wright)在2019年《科学美国人》杂志上写道,观察到:“当前的美国导弹防御计划主要是由技术,政治和恐惧所驱动。导弹防御将无法使我们摆脱对核武器的脆弱性。事态发展将阻止进一步削减核武库,并可能刺激新的部署,从而为采取实际措施降低核风险创造了障碍。”<ref>Laura Grego and David Wright, "Broken Shield: Missiles designed to destroy incoming nuclear warheads fail frequently in tests and could increase global risk of mass destruction", ''Scientific American'', vol. 320, no. no. 6 (June 2019), pp. 62–67. (p. 67.)</ref> |
| + | |
| | | |
| ==科学心理学== | | ==科学心理学== |
第265行: |
第278行: |
| 耶鲁大学物理学家,天文学家Priyamvada Natarajan撰写了Urbain Le Verrier和John Couch Adams在1846年几乎同时发现的海王星行星(早在1612年伽利略·伽利莱(Galileo Galilei)之后,其他天文学家就不知不觉地观察了该行星),评论道: | | 耶鲁大学物理学家,天文学家Priyamvada Natarajan撰写了Urbain Le Verrier和John Couch Adams在1846年几乎同时发现的海王星行星(早在1612年伽利略·伽利莱(Galileo Galilei)之后,其他天文学家就不知不觉地观察了该行星),评论道: |
| {{blockquote|这一事件只是证明科学不是一个热情,中立和客观努力的众多事件之一,而是其中观念和个人抱负的激烈冲突经常与偶然性相结合以推动新发现的过程<ref>Priyamvada Natarajan, "In Search of Planet X" (review of Dale P. Cruikshank and William Sheehan, ''Discovering Pluto: Exploration at the Edge of the Solar System'', University of Arizona Press, 475 pp.; Alan Stern and David Grinspoon, ''Chasing New Horizons: Inside the Epic First Mission to Pluto'', Picador, 295 pp.; and Adam Morton, ''Should We Colonize Other Planets?'', Polity, 122 pp.), ''The New York Review of Books'', vol. LXVI, no. 16 (24 October 2019), pp. 39–41. (p. 39.)</ref>}} | | {{blockquote|这一事件只是证明科学不是一个热情,中立和客观努力的众多事件之一,而是其中观念和个人抱负的激烈冲突经常与偶然性相结合以推动新发现的过程<ref>Priyamvada Natarajan, "In Search of Planet X" (review of Dale P. Cruikshank and William Sheehan, ''Discovering Pluto: Exploration at the Edge of the Solar System'', University of Arizona Press, 475 pp.; Alan Stern and David Grinspoon, ''Chasing New Horizons: Inside the Epic First Mission to Pluto'', Picador, 295 pp.; and Adam Morton, ''Should We Colonize Other Planets?'', Polity, 122 pp.), ''The New York Review of Books'', vol. LXVI, no. 16 (24 October 2019), pp. 39–41. (p. 39.)</ref>}} |
| + | |
| | | |
| ===自我驱动力=== | | ===自我驱动力=== |
第275行: |
第289行: |
| “席林(Schilling)写道,其中[大多数]是受唯心主义驱使的,这一崇高目标比其自身的舒适,声誉或家庭更为重要。尼古拉·特斯拉(Nikola Tesla)希望通过无限的自由能源使人类摆脱劳动,并通过全球和平实现国际和平。沟通;埃隆·马斯克(Elon Musk)希望解决世界的能源问题,并在火星上殖民化;本杰明·富兰克林(Benjamin Franklin)正在通过平等主义,宽容,勤奋,节制和慈善的理想寻求更大的社会和谐与生产力。只有在包括妇女在内的所有波兰人追求教育和技术进步的情况下,才能保存在沙皇俄国统治下的妇女。”<ref>Melissa A. Schilling, ''Quirky: The Remarkable Story of the Traits, Foibles, and Genius of Breakthrough Innovators Who Changed the World'', New York, Public Affairs, 2018, {{ISBN|9781610397926}}, p. 15.</ref> | | “席林(Schilling)写道,其中[大多数]是受唯心主义驱使的,这一崇高目标比其自身的舒适,声誉或家庭更为重要。尼古拉·特斯拉(Nikola Tesla)希望通过无限的自由能源使人类摆脱劳动,并通过全球和平实现国际和平。沟通;埃隆·马斯克(Elon Musk)希望解决世界的能源问题,并在火星上殖民化;本杰明·富兰克林(Benjamin Franklin)正在通过平等主义,宽容,勤奋,节制和慈善的理想寻求更大的社会和谐与生产力。只有在包括妇女在内的所有波兰人追求教育和技术进步的情况下,才能保存在沙皇俄国统治下的妇女。”<ref>Melissa A. Schilling, ''Quirky: The Remarkable Story of the Traits, Foibles, and Genius of Breakthrough Innovators Who Changed the World'', New York, Public Affairs, 2018, {{ISBN|9781610397926}}, p. 15.</ref> |
| | | |
− | 大多数创新者还孜孜不倦地工作,因为他们发现工作非常有意义。有些人对成就有很高的要求。许多人似乎也发现工作是自动完成的,这是为了自己的报酬。[103]突破性创新者中令人惊讶的很大一部分是自学成才的人(自学成才的人),并且在课堂上比在室内要好得多。<ref>Melissa A. Schilling, ''Quirky: The Remarkable Story of the Traits, Foibles, and Genius of Breakthrough Innovators Who Changed the World'', New York, Public Affairs, 2018, {{ISBN|9781610397926}}, p. 16.</ref> 突破性创新者中令人惊讶的很大一部分是自学成才的人(自学成才的人),并且在课堂上比在室内要好得多。<ref>Melissa A. Schilling, ''Quirky: The Remarkable Story of the Traits, Foibles, and Genius of Breakthrough Innovators Who Changed the World'', New York, Public Affairs, 2018, {{ISBN|9781610397926}}, p. 17.</ref> | + | 大多数创新者还孜孜不倦地工作,因为他们发现工作非常有意义。有些人对成就有很高的要求。许多人似乎也发现工作是自动完成的,这是为了自己的报酬。[103]突破性创新者中令人惊讶的很大一部分是自学成才的人(自学成才的人),并且在课堂上比在室内要好得多。<ref>Melissa A. Schilling, ''Quirky: The Remarkable Story of the Traits, Foibles, and Genius of Breakthrough Innovators Who Changed the World'', New York, Public Affairs, 2018, {{ISBN|9781610397926}}, p. 16.</ref> 突破性创新者中令人惊讶的很大一部分是自学成才的人(自学成才的人),并且在课堂上比在室内要好得多。<ref>Melissa A. Schilling, ''Quirky: The Remarkable Story of the Traits, Foibles, and Genius of Breakthrough Innovators Who Changed the World'', New York, Public Affairs, 2018, p. 17.</ref> |
| | | |
| 席林写道:“几乎所有突破性创新都是从一个不寻常的想法或打破传统观念的信念开始的……。但是,仅凭创意几乎是远远不够的。许多人都有创意,甚至是出色的创意。但通常我们缺乏采取这些想法的时间,知识,金钱或动力。”通常很难获得他人的帮助来实施原始思想,因为这些思想最初通常很难被他人理解和重视。因此,每一个突破性创新者都表现出非凡的努力和毅力。<ref>Melissa A. Schilling, ''Quirky: The Remarkable Story of the Traits, Foibles, and Genius of Breakthrough Innovators Who Changed the World'', New York, Public Affairs, 2018, {{ISBN|9781610397926}}, pp. 17–18.</ref> 即便如此,希林写道,“在正确的时间在正确的位置仍然很重要”。<ref>Melissa A. Schilling, ''Quirky: The Remarkable Story of the Traits, Foibles, and Genius of Breakthrough Innovators Who Changed the World'', New York, Public Affairs, 2018, {{ISBN|9781610397926}}, p. 18.</ref> | | 席林写道:“几乎所有突破性创新都是从一个不寻常的想法或打破传统观念的信念开始的……。但是,仅凭创意几乎是远远不够的。许多人都有创意,甚至是出色的创意。但通常我们缺乏采取这些想法的时间,知识,金钱或动力。”通常很难获得他人的帮助来实施原始思想,因为这些思想最初通常很难被他人理解和重视。因此,每一个突破性创新者都表现出非凡的努力和毅力。<ref>Melissa A. Schilling, ''Quirky: The Remarkable Story of the Traits, Foibles, and Genius of Breakthrough Innovators Who Changed the World'', New York, Public Affairs, 2018, {{ISBN|9781610397926}}, pp. 17–18.</ref> 即便如此,希林写道,“在正确的时间在正确的位置仍然很重要”。<ref>Melissa A. Schilling, ''Quirky: The Remarkable Story of the Traits, Foibles, and Genius of Breakthrough Innovators Who Changed the World'', New York, Public Affairs, 2018, {{ISBN|9781610397926}}, p. 18.</ref> |
| + | |
| | | |
| ===领导力=== | | ===领导力=== |
第285行: |
第300行: |
| | | |
| 未参与这项研究的心理学家保罗·萨克特(Paul Sackett)评论说:“对我来说,对这项工作的正确解释是,它强调需要了解高智商的领导者所做的事情,从而导致追随者的看法降低。错误的解释是“ [不要雇用高智商的领导者。” <ref name="Matthew Hutson 2018 p. 20"/> 该研究的主要作者,心理学家约翰·安托纳基斯(John Antonakis)建议,领导者应利用自己的智慧来产生创造性的隐喻,以说服和启发他人。 Antonakis说:“我认为一个聪明的人能够恰当地发出自己的智慧并仍然与人们保持联系的唯一方法就是以超凡魅力的方式说话。”<ref name="Matthew Hutson 2018 p. 20"/> | | 未参与这项研究的心理学家保罗·萨克特(Paul Sackett)评论说:“对我来说,对这项工作的正确解释是,它强调需要了解高智商的领导者所做的事情,从而导致追随者的看法降低。错误的解释是“ [不要雇用高智商的领导者。” <ref name="Matthew Hutson 2018 p. 20"/> 该研究的主要作者,心理学家约翰·安托纳基斯(John Antonakis)建议,领导者应利用自己的智慧来产生创造性的隐喻,以说服和启发他人。 Antonakis说:“我认为一个聪明的人能够恰当地发出自己的智慧并仍然与人们保持联系的唯一方法就是以超凡魅力的方式说话。”<ref name="Matthew Hutson 2018 p. 20"/> |
| + | |
| | | |
| ==科学社会学== | | ==科学社会学== |
第309行: |
第325行: |
| | | |
| 最具影响力的科学工作主要出自常规内容的组合,但它同时也出自不寻常的组合。这种类型的论文获得高引用率的可能性是其两倍。换句话说,新的和既有元素的混合是成功科学进步的最安全的途径。 | | 最具影响力的科学工作主要出自常规内容的组合,但它同时也出自不寻常的组合。这种类型的论文获得高引用率的可能性是其两倍。换句话说,新的和既有元素的混合是成功科学进步的最安全的途径。 |
| + | |
| | | |
| ===职业选择=== | | ===职业选择=== |
第345行: |
第362行: |
| | | |
| 祖克曼写道:“精英学徒到本来就是精英学徒的精英大师的行列,等等,无限期地,它们常常可以追溯到很久以前的科学历史,早在1900年之前,那时[阿尔弗雷德]诺贝尔科学奖将揭开现在的序幕daccess-ods.un.org daccess-ods.un.org作为国际一流的大师和学徒悠久历史链条的一个例子,以出生于德国的英国获奖者汉斯·克雷布斯(Hans Krebs,1953年)为例,他的科学血统可以追溯到他的大师,1931年的获奖者奥托·沃堡(Otto Warburg),沃堡曾与埃米尔·菲斯[her] [185] –1919年研究,他于1902年获得奖金,享年50岁,距授予他的老师阿道夫[1905年]三年了。冯·拜尔[von Baeyer [1835–1917],现年70岁。这四位诺贝尔大师和学徒有其自己的诺贝尔前学历。他的结构式的思想彻底革新了有机化学,谁是Perh以经常被重述的梦境中有关他在梦中碰到苯的环结构而闻名的aps(1865)。 Kekulé自己曾受过伟大的有机化学家Justus von Liebig(1803-73)的训练,他曾在Sorbonne与大师J.oseph L [ouis] Gay-Lussac的大师(1778-1850)一起学习,他本人曾经对克洛德(Claude)习以为常。路易斯·伯特霍尔特(Louis Berthollet,1748–1822年)。在众多机构和认知成就中,伯特霍尔特帮助创立了ÉcolePolytechnique,并担任埃及拿破仑的科学顾问,并且对我们的目的更重要的是,他与[Antoine] Lavoisier [1743-94]一起修改了化学命名法。” <ref name="Scientific Elite 1977, p. 105">Harriet Zuckerman, ''Scientific Elite: Nobel Laureates in the United States'', New York, The Free Press, 1977, p. 105.</ref> | | 祖克曼写道:“精英学徒到本来就是精英学徒的精英大师的行列,等等,无限期地,它们常常可以追溯到很久以前的科学历史,早在1900年之前,那时[阿尔弗雷德]诺贝尔科学奖将揭开现在的序幕daccess-ods.un.org daccess-ods.un.org作为国际一流的大师和学徒悠久历史链条的一个例子,以出生于德国的英国获奖者汉斯·克雷布斯(Hans Krebs,1953年)为例,他的科学血统可以追溯到他的大师,1931年的获奖者奥托·沃堡(Otto Warburg),沃堡曾与埃米尔·菲斯[her] [185] –1919年研究,他于1902年获得奖金,享年50岁,距授予他的老师阿道夫[1905年]三年了。冯·拜尔[von Baeyer [1835–1917],现年70岁。这四位诺贝尔大师和学徒有其自己的诺贝尔前学历。他的结构式的思想彻底革新了有机化学,谁是Perh以经常被重述的梦境中有关他在梦中碰到苯的环结构而闻名的aps(1865)。 Kekulé自己曾受过伟大的有机化学家Justus von Liebig(1803-73)的训练,他曾在Sorbonne与大师J.oseph L [ouis] Gay-Lussac的大师(1778-1850)一起学习,他本人曾经对克洛德(Claude)习以为常。路易斯·伯特霍尔特(Louis Berthollet,1748–1822年)。在众多机构和认知成就中,伯特霍尔特帮助创立了ÉcolePolytechnique,并担任埃及拿破仑的科学顾问,并且对我们的目的更重要的是,他与[Antoine] Lavoisier [1743-94]一起修改了化学命名法。” <ref name="Scientific Elite 1977, p. 105">Harriet Zuckerman, ''Scientific Elite: Nobel Laureates in the United States'', New York, The Free Press, 1977, p. 105.</ref> |
| + | |
| + | |
| ===学术引用=== | | ===学术引用=== |
| [[File:sci6.jpg|450px|left|thumb|upright|(A)如果每篇论文的引用次数c除以该学科所有论文的平均引用次数c0,那么在同一学科和年份上发表的论文的引用分布,各个学科基本上都是统一的。虚线是对数正态拟合曲线。 | | [[File:sci6.jpg|450px|left|thumb|upright|(A)如果每篇论文的引用次数c除以该学科所有论文的平均引用次数c0,那么在同一学科和年份上发表的论文的引用分布,各个学科基本上都是统一的。虚线是对数正态拟合曲线。 |
| (B)1964年发表于“ 物理评论(Physical Review)”的四篇论文的引文历史,根据其独特的动态选择,显示出“跳跃衰变”模式(蓝色),峰值延迟(紫红),引文数量稳定模式(绿色),和引文指数上升(红色)。(C.单个纸)引文由三个参数确定:fitness λ ,immediacy μ ,和longevity σ 。通过适当的(λ,μ,σ)参数重新调整(B)中每篇论文的引用,四篇论文将其合并为一个通用函数,这对所有学科都是相同的。]] | | (B)1964年发表于“ 物理评论(Physical Review)”的四篇论文的引文历史,根据其独特的动态选择,显示出“跳跃衰变”模式(蓝色),峰值延迟(紫红),引文数量稳定模式(绿色),和引文指数上升(红色)。(C.单个纸)引文由三个参数确定:fitness λ ,immediacy μ ,和longevity σ 。通过适当的(λ,μ,σ)参数重新调整(B)中每篇论文的引用,四篇论文将其合并为一个通用函数,这对所有学科都是相同的。]] |
− |
| |
| | | |
| 学术引用仍然是科学中衡量学术成就的主流方式。鉴于对主流引用标准的长期依赖,引文积累的动态规律已被几代学者所验证。根据Price开创性的研究,科学论文引文的分布是高度具有倾向性的:许多论文从未被引用,但开创性论文可以累积10,000或更多的引用。这种不均匀的引文分布是科学变动的一种强大的,自然出现的,革新的属性。当论文按机构分组时,它也成立。并且如果一个论文的引用的次数除以论文同学科同年的平均引文,得到的分数分布是所有学科基本上无区别的。 | | 学术引用仍然是科学中衡量学术成就的主流方式。鉴于对主流引用标准的长期依赖,引文积累的动态规律已被几代学者所验证。根据Price开创性的研究,科学论文引文的分布是高度具有倾向性的:许多论文从未被引用,但开创性论文可以累积10,000或更多的引用。这种不均匀的引文分布是科学变动的一种强大的,自然出现的,革新的属性。当论文按机构分组时,它也成立。并且如果一个论文的引用的次数除以论文同学科同年的平均引文,得到的分数分布是所有学科基本上无区别的。 |
第357行: |
第375行: |
| | | |
| 这样的模型可以与引用动力学的其他特征,比如知识的过时共同使用来增强模型说明性。文章引用数量随着时间增加而下降,或者也可以利用一个'''拟合参数 fitness parameter''' 对应每个论文对科学界的吸引力。只有一小部分论文不能被以上假设所描述,称为“睡美人”,因为它们在发表后一段时间内都无人问津,但是在经过一段时间后,突然收到大量的关注和引用。 | | 这样的模型可以与引用动力学的其他特征,比如知识的过时共同使用来增强模型说明性。文章引用数量随着时间增加而下降,或者也可以利用一个'''拟合参数 fitness parameter''' 对应每个论文对科学界的吸引力。只有一小部分论文不能被以上假设所描述,称为“睡美人”,因为它们在发表后一段时间内都无人问津,但是在经过一段时间后,突然收到大量的关注和引用。 |
| + | |
| | | |
| ===科学合作=== | | ===科学合作=== |
第372行: |
第391行: |
| | | |
| [[File:sci5.jpg|600px|left|thumb|upright=3|在过去的一个世纪里,平均团队规模一直在稳步扩大。红色虚线表示所有论文中共同作者的平均数; 黑色曲线考虑那些引用数高于领域平均值的文章的团队平均大小。黑色曲线系统地位于红色虚线之上,这意味着大型团队比小型团队更容易产生高影响力的工作。每张图表对应WoS规定的一个学科大类(A)科学与工程,(B)社会科学,(C)艺术与人文科学]] | | [[File:sci5.jpg|600px|left|thumb|upright=3|在过去的一个世纪里,平均团队规模一直在稳步扩大。红色虚线表示所有论文中共同作者的平均数; 黑色曲线考虑那些引用数高于领域平均值的文章的团队平均大小。黑色曲线系统地位于红色虚线之上,这意味着大型团队比小型团队更容易产生高影响力的工作。每张图表对应WoS规定的一个学科大类(A)科学与工程,(B)社会科学,(C)艺术与人文科学]] |
− |
| |
| | | |
| 平均而言,来自大型团队的研究员可以在各种领域获得更多的引用。研究表明,小型团队倾向于用新想法和机会变革科学和技术,而大型团队则推动现有的研究的进程。因此,资助和培养各种规模的团队来缓和科学的官僚化可能很重要的。 | | 平均而言,来自大型团队的研究员可以在各种领域获得更多的引用。研究表明,小型团队倾向于用新想法和机会变革科学和技术,而大型团队则推动现有的研究的进程。因此,资助和培养各种规模的团队来缓和科学的官僚化可能很重要的。 |
第384行: |
第402行: |
| | | |
| 鉴于研究论文中作者的数量越来越多,谁应该并且确实获得最多的名誉?科学中名誉的错误分配的经典理论是马太效应,其中参与合作工作的较高地位的科学家因其贡献而获得超额名誉。为协作参与人员分配信誉是很困难的,因为不能轻易区分个人贡献。但是,有可能检查共同作者论文的共同模式,以确定群体中的每个共同作者分配的信誉。 | | 鉴于研究论文中作者的数量越来越多,谁应该并且确实获得最多的名誉?科学中名誉的错误分配的经典理论是马太效应,其中参与合作工作的较高地位的科学家因其贡献而获得超额名誉。为协作参与人员分配信誉是很困难的,因为不能轻易区分个人贡献。但是,有可能检查共同作者论文的共同模式,以确定群体中的每个共同作者分配的信誉。 |
| + | |
| | | |
| ===政策=== | | ===政策=== |
− |
| |
| ====大科学==== | | ====大科学==== |
| 被称为“大科学”的东西来自美国的第二次世界大战曼哈顿计划,该计划生产了世界上第一枚核武器。自那时以来,“大科学”就与物理学联系在一起,这需要大量的粒子加速器。在生物学领域,Big Science于1990年通过“人类基因组计划”首次亮相,以对人类DNA进行测序。 2013年,美国宣布了一项BRAIN计划,而欧盟宣布了一项人脑计划,神经科学成为了大科学领域。以色列,加拿大,澳大利亚,新西兰,日本和中国也宣布了新的重要脑研究计划。<ref >Stefan Theil, "Trouble in Mind: Two years in, a $1-billion-plus effort to simulate the human brain is in disarray. Was it poor management, or is something fundamentally wrong with Big Science?", ''Scientific American'', vol. 313, no. 4 (October 2015), p. 38.</ref>早期成功的“大科学”项目使政治家,大众媒体和公众习惯于以有时不受批评的眼光看待“大科学”计划。<ref name="Stefan Theil 2015 p. 42">Stefan Theil, "Trouble in Mind", ''Scientific American'', vol. 313, no. 4 (October 2015), p. 42.</ref> | | 被称为“大科学”的东西来自美国的第二次世界大战曼哈顿计划,该计划生产了世界上第一枚核武器。自那时以来,“大科学”就与物理学联系在一起,这需要大量的粒子加速器。在生物学领域,Big Science于1990年通过“人类基因组计划”首次亮相,以对人类DNA进行测序。 2013年,美国宣布了一项BRAIN计划,而欧盟宣布了一项人脑计划,神经科学成为了大科学领域。以色列,加拿大,澳大利亚,新西兰,日本和中国也宣布了新的重要脑研究计划。<ref >Stefan Theil, "Trouble in Mind: Two years in, a $1-billion-plus effort to simulate the human brain is in disarray. Was it poor management, or is something fundamentally wrong with Big Science?", ''Scientific American'', vol. 313, no. 4 (October 2015), p. 38.</ref>早期成功的“大科学”项目使政治家,大众媒体和公众习惯于以有时不受批评的眼光看待“大科学”计划。<ref name="Stefan Theil 2015 p. 42">Stefan Theil, "Trouble in Mind", ''Scientific American'', vol. 313, no. 4 (October 2015), p. 42.</ref> |
第392行: |
第410行: |
| 美国的BRAIN计划的灵感来自对精神障碍的蔓延和成本的担忧,以及对诸如遗传遗传学之类的新型大脑操纵技术的兴奋。[126]经过一些早期的错误尝试之后,美国国家心理健康研究所让该国的大脑科学家定义了BRAIN Initiative,这导致了一个雄心勃勃的跨学科计划,以开发新的技术工具来更好地监视,测量和模拟大脑。国家心理健康研究所的同行评审过程确保了研究的竞争。.<ref name="Stefan Theil 2015 p. 42"/> | | 美国的BRAIN计划的灵感来自对精神障碍的蔓延和成本的担忧,以及对诸如遗传遗传学之类的新型大脑操纵技术的兴奋。[126]经过一些早期的错误尝试之后,美国国家心理健康研究所让该国的大脑科学家定义了BRAIN Initiative,这导致了一个雄心勃勃的跨学科计划,以开发新的技术工具来更好地监视,测量和模拟大脑。国家心理健康研究所的同行评审过程确保了研究的竞争。.<ref name="Stefan Theil 2015 p. 42"/> |
| 在欧盟,欧盟委员会的“人脑计划”开创了一个艰难的开端,因为政治和经济方面的考虑使人们对该计划的最初科学计划的可行性(主要是基于神经回路的计算机模型)的可行性产生疑问。四年前,即2009年,由于担心欧盟在计算机和其他技术方面会进一步落后于美国,欧盟已开始为大型科学项目发起竞争,而人脑项目的初始计划似乎是一个合适的选择用于可能在先进技术和新兴技术方面处于领先地位的欧洲计划。<ref name="Stefan Theil 2015 p. 42"/> 仅在2015年,在800多名欧洲神经科学家扬言要抵制欧洲范围的合作之后,人类大脑项目就引入了一些变化,用科学的思维取代了许多最初的政治和经济考虑.<ref>Stefan Theil, "Trouble in Mind", ''Scientific American'', vol. 313, no. 4 (October 2015), pp. 38-39.</ref> | | 在欧盟,欧盟委员会的“人脑计划”开创了一个艰难的开端,因为政治和经济方面的考虑使人们对该计划的最初科学计划的可行性(主要是基于神经回路的计算机模型)的可行性产生疑问。四年前,即2009年,由于担心欧盟在计算机和其他技术方面会进一步落后于美国,欧盟已开始为大型科学项目发起竞争,而人脑项目的初始计划似乎是一个合适的选择用于可能在先进技术和新兴技术方面处于领先地位的欧洲计划。<ref name="Stefan Theil 2015 p. 42"/> 仅在2015年,在800多名欧洲神经科学家扬言要抵制欧洲范围的合作之后,人类大脑项目就引入了一些变化,用科学的思维取代了许多最初的政治和经济考虑.<ref>Stefan Theil, "Trouble in Mind", ''Scientific American'', vol. 313, no. 4 (October 2015), pp. 38-39.</ref> |
| + | |
| | | |
| ===基金资助=== | | ===基金资助=== |
− |
| |
| ====政府资助==== | | ====政府资助==== |
| 微软前首席技术官,微软研究院创始人内森·迈尔沃尔德(Nathan Myhrvold)认为,基础科学的资金不能留给私营部门-“没有政府资源,基础科学就会停滞不前。”<ref name="Needs a Benefactor 2016 p. 11">Nathan Myhrvold, "Even Genius Needs a Benefactor: Without government resources, basic science will grind to a halt", ''Scientific American'', vol. 314, no. 2 (February 2016), p. 11.</ref> 他指出爱因斯坦(Albert Einstein)于1915年发表的广义相对论并没有在尤里卡时代从他的大脑中全面发展。他从事了多年,最终由与数学家戴维·希尔伯特(David Hilbert)的对决而最终完成。.<ref name="Needs a Benefactor 2016 p. 11"/> T几乎任何标志性的科学发现或技术发明(包括灯泡,晶体管,DNA甚至是互联网)的历史都表明,具有突破性意义的著名名字“仅比竞争对手领先几步”。一些作家和民选官员利用这种“平行创新”现象来反对基础研究的公共资助:他们认为,政府应将其留给公司来资助他们需要的研究。<ref name="Needs a Benefactor 2016 p. 11"/> | | 微软前首席技术官,微软研究院创始人内森·迈尔沃尔德(Nathan Myhrvold)认为,基础科学的资金不能留给私营部门-“没有政府资源,基础科学就会停滞不前。”<ref name="Needs a Benefactor 2016 p. 11">Nathan Myhrvold, "Even Genius Needs a Benefactor: Without government resources, basic science will grind to a halt", ''Scientific American'', vol. 314, no. 2 (February 2016), p. 11.</ref> 他指出爱因斯坦(Albert Einstein)于1915年发表的广义相对论并没有在尤里卡时代从他的大脑中全面发展。他从事了多年,最终由与数学家戴维·希尔伯特(David Hilbert)的对决而最终完成。.<ref name="Needs a Benefactor 2016 p. 11"/> T几乎任何标志性的科学发现或技术发明(包括灯泡,晶体管,DNA甚至是互联网)的历史都表明,具有突破性意义的著名名字“仅比竞争对手领先几步”。一些作家和民选官员利用这种“平行创新”现象来反对基础研究的公共资助:他们认为,政府应将其留给公司来资助他们需要的研究。<ref name="Needs a Benefactor 2016 p. 11"/> |
第403行: |
第421行: |
| | | |
| 公司研究人员现在必须将注意力集中在可以迅速带来收入的创新上。否则,研究预算将无法为公司的投资者辩护。 “那些相信以利润为导向的公司会无私地为具有广泛利益的基础科学付出代价的人,但他们主要是对他人而不是对一代人来说是幼稚的。...如果政府将其交给私人部门来支付基础研究,大多数科学将陷入停顿。幸存的研究大部分将秘密进行,因为担心将下一件大事交给竞争对手。” <ref name="Needs a Benefactor 2016 p. 11"/> | | 公司研究人员现在必须将注意力集中在可以迅速带来收入的创新上。否则,研究预算将无法为公司的投资者辩护。 “那些相信以利润为导向的公司会无私地为具有广泛利益的基础科学付出代价的人,但他们主要是对他人而不是对一代人来说是幼稚的。...如果政府将其交给私人部门来支付基础研究,大多数科学将陷入停顿。幸存的研究大部分将秘密进行,因为担心将下一件大事交给竞争对手。” <ref name="Needs a Benefactor 2016 p. 11"/> |
| + | |
| | | |
| ====私人资助==== | | ====私人资助==== |
第411行: |
第430行: |
| | | |
| 这些机构做得很好,部分是通过提供更严格的系统的替代方案。但是私人基金会也有责任。富裕的捐助者倾向于将资金用于个人的热情。基金会不收税;否则,支持他们的大部分资金将流向政府。<ref name="D.T. Max 2017, p. 75"/> | | 这些机构做得很好,部分是通过提供更严格的系统的替代方案。但是私人基金会也有责任。富裕的捐助者倾向于将资金用于个人的热情。基金会不收税;否则,支持他们的大部分资金将流向政府。<ref name="D.T. Max 2017, p. 75"/> |
| + | |
| | | |
| ====资助偏见==== | | ====资助偏见==== |
第433行: |
第453行: |
| | | |
| 缺乏良好的数据:“关于哪种科学实践效果最好的证据相对有限。我们需要对研究进行更多的研究('元研究'),以了解如何最佳地执行,评估,审查,传播和奖励科学。”解决方案:“我们应该投资研究如何获得最好的科学,以及如何选择和奖励最好的科学家。”<ref name="John P.A 2018 p. 55"/> | | 缺乏良好的数据:“关于哪种科学实践效果最好的证据相对有限。我们需要对研究进行更多的研究('元研究'),以了解如何最佳地执行,评估,审查,传播和奖励科学。”解决方案:“我们应该投资研究如何获得最好的科学,以及如何选择和奖励最好的科学家。”<ref name="John P.A 2018 p. 55"/> |
| + | |
| | | |
| ===性别偏见=== | | ===性别偏见=== |
第444行: |
第465行: |
| | | |
| “当我与一群女科学家交谈时,”波莫罗伊写道,“我经常问他们是否曾经参加过他们提出建议的会议,是否被忽略,然后听到一个男人因做出同样的建议而受到赞扬和支持。几分钟后,每次观众中的大多数女性举手,来自高中科学老师,大学导师,大学教务长或科学精英成员的微攻击尤其有害。享有盛誉的奖项-那些应该鼓舞和支持下一代科学家的人。”<ref name="Claire Pomeroy 2016 p. 11"/> | | “当我与一群女科学家交谈时,”波莫罗伊写道,“我经常问他们是否曾经参加过他们提出建议的会议,是否被忽略,然后听到一个男人因做出同样的建议而受到赞扬和支持。几分钟后,每次观众中的大多数女性举手,来自高中科学老师,大学导师,大学教务长或科学精英成员的微攻击尤其有害。享有盛誉的奖项-那些应该鼓舞和支持下一代科学家的人。”<ref name="Claire Pomeroy 2016 p. 11"/> |
| + | |
| | | |
| ===性骚扰=== | | ===性骚扰=== |
第451行: |
第473行: |
| | | |
| 一些高等教育机构采用了一种称为“性骚扰”的新颖性举报方法,该方法已被某些高等教育机构采用,该方法使受屈的人可以记录下带有日期戳的性骚扰经历,而无需实际对其进行正式举报。该程序使人们可以查看其他人是否记录了同一个人的骚扰经历,并匿名共享信息。<ref name="Clara Moskowitz 2018 p. 61"/> | | 一些高等教育机构采用了一种称为“性骚扰”的新颖性举报方法,该方法已被某些高等教育机构采用,该方法使受屈的人可以记录下带有日期戳的性骚扰经历,而无需实际对其进行正式举报。该程序使人们可以查看其他人是否记录了同一个人的骚扰经历,并匿名共享信息。<ref name="Clara Moskowitz 2018 p. 61"/> |
| + | |
| | | |
| ===刻板印象=== | | ===刻板印象=== |
第461行: |
第484行: |
| | | |
| 辛皮安和莱斯利得出结论:“鉴于当前的社会刻板印象,将[天才或才华]刻画为[学术成功]必不可少的信息,可能会不必要地挫败刻板印象群体的有才华成员。”<ref name="ReferenceD"/> | | 辛皮安和莱斯利得出结论:“鉴于当前的社会刻板印象,将[天才或才华]刻画为[学术成功]必不可少的信息,可能会不必要地挫败刻板印象群体的有才华成员。”<ref name="ReferenceD"/> |
| + | |
| | | |
| ===学术壁垒=== | | ===学术壁垒=== |
第470行: |
第494行: |
| | | |
| 但是,似乎有迹象表明,与其他社会互动对科学职业的危害越来越小。现在有这么多人拥有社交媒体帐户,因此成为公众人物对于科学家来说并不像以前那样不寻常。此外,随着传统资金来源的停滞,上市有时会导致新的,非常规的资金流。除研究,教学和管理的传统作用外,一些机构,例如埃默里大学和麻省理工学院,可能已经开始将推广活动视为学术活动领域。国家联邦科学基金会现在正式赞成普及,这在联邦资助机构中是例外。<ref>Susana Martinez-Conde, Devin Powell and Stephen L. Macknik, "The Plight of the Celebrity Scientist", ''Scientific American'', vol. 315, no. 4 (October 2016), p. 67.</ref><ref name="The Editors 2018 p. 6"/> | | 但是,似乎有迹象表明,与其他社会互动对科学职业的危害越来越小。现在有这么多人拥有社交媒体帐户,因此成为公众人物对于科学家来说并不像以前那样不寻常。此外,随着传统资金来源的停滞,上市有时会导致新的,非常规的资金流。除研究,教学和管理的传统作用外,一些机构,例如埃默里大学和麻省理工学院,可能已经开始将推广活动视为学术活动领域。国家联邦科学基金会现在正式赞成普及,这在联邦资助机构中是例外。<ref>Susana Martinez-Conde, Devin Powell and Stephen L. Macknik, "The Plight of the Celebrity Scientist", ''Scientific American'', vol. 315, no. 4 (October 2016), p. 67.</ref><ref name="The Editors 2018 p. 6"/> |
| + | |
| | | |
| ===机构势利=== | | ===机构势利=== |
第476行: |
第501行: |
| ==文献== | | ==文献== |
| <references/> | | <references/> |
| + | |
| | | |
| ==进一步阅读== | | ==进一步阅读== |
第482行: |
第508行: |
| * ''Scientific American'' Board of Editors, "Science Suffers from Harassment: A leading organization has said that sexual harassment is scientific misconduct. Where are the others?", ''Scientific American'', vol. 318, no. 3 (March 2018), p. 8. | | * ''Scientific American'' Board of Editors, "Science Suffers from Harassment: A leading organization has said that sexual harassment is scientific misconduct. Where are the others?", ''Scientific American'', vol. 318, no. 3 (March 2018), p. 8. |
| * James D. Watson, ''The Double Helix: A Personal Account of the Discovery of the Structure of DNA'', New York, Atheneum, 1968. | | * James D. Watson, ''The Double Helix: A Personal Account of the Discovery of the Structure of DNA'', New York, Atheneum, 1968. |
− | *[[https://mp.weixin.qq.com/s/TMBuIbsxigNwfQdZthIKeA 团队规模与颠覆性创新]]
| + | |
− | * [[https://mp.weixin.qq.com/s/hzmQp6Xruf9wC3QJDqlAbg 小团队的创新性研究“供养”了大团队吗?]]
| |
− | *[[https://mp.weixin.qq.com/s/54rVRs7s2DQsjEODFbjtHg Nature物理:诺贝尔奖更偏好年轻的小团队吗?]]
| |
− | *[[https://mp.weixin.qq.com/s/MnAbdEaAPZrCZfDudExgXg PNAS:科学奖项指数增长,为什么获奖者却总是那几个人?]]
| |
| | | |
| | | |
| ==外部连接== | | ==外部连接== |
| * [http://www.pbs.org/wnet/americanmasters/american-masters-decoding-watson-full-film/10923/ American Masters: Decoding Watson] PBS documentary about James Watson, co-discoverer of the structure of DNA, including interviews with Watson, his family, and colleagues. 2019-01-02. | | * [http://www.pbs.org/wnet/americanmasters/american-masters-decoding-watson-full-film/10923/ American Masters: Decoding Watson] PBS documentary about James Watson, co-discoverer of the structure of DNA, including interviews with Watson, his family, and colleagues. 2019-01-02. |
| + | |
| + | |
| ==编者推荐== | | ==编者推荐== |
− | *本篇参考借鉴集智俱乐部发表文章[https://mp.weixin.qq.com/s/_Ye_9_88VAoCJQqro-OB-g Science经典综述文章:什么是科学学] | + | ===集智文章=== |
| + | *[https://mp.weixin.qq.com/s/_Ye_9_88VAoCJQqro-OB-g Science经典综述文章:什么是科学学] |
| + | *[https://mp.weixin.qq.com/s/TMBuIbsxigNwfQdZthIKeA 团队规模与颠覆性创新] |
| + | *[https://mp.weixin.qq.com/s/hzmQp6Xruf9wC3QJDqlAbg 小团队的创新性研究“供养”了大团队吗?] |
| + | *[https://mp.weixin.qq.com/s/54rVRs7s2DQsjEODFbjtHg Nature物理:诺贝尔奖更偏好年轻的小团队吗?] |
| + | *[https://mp.weixin.qq.com/s/MnAbdEaAPZrCZfDudExgXg PNAS:科学奖项指数增长,为什么获奖者却总是那几个人?] |
| + | |
| | | |
− | 本中文词条由趣木木用户、 参与编译, 用户审校,[[用户:Meng莫|Meng莫]]编辑,欢迎在讨论页面留言。
| + | ---- |
| + | 本中文词条由趣木木参与编译,[[用户:Meng莫|Meng莫]]、[[用户:薄荷|薄荷]]编辑,欢迎在讨论页面留言。 |
| | | |
| | | |
| '''本词条内容源自wikipedia及公开资料,遵守 CC3.0协议。''' | | '''本词条内容源自wikipedia及公开资料,遵守 CC3.0协议。''' |