更改

跳到导航 跳到搜索
删除339字节 、 2022年1月10日 (一) 16:34
无编辑摘要
第34行: 第34行:     
==Career==
 
==Career==
 +
 +
== 职业 ==
 
Rosen was born on June 27, 1934 in [[Brownsville, Brooklyn|Brownsville]] (a section of [[Brooklyn]]), in [[New York City]]. He studied biology, mathematics, physics, philosophy, and history; particularly, the history of science. In 1959 he obtained a PhD in relational biology, a specialization within the broader field of [[Mathematical Biology]], under the guidance of Professor [[Nicolas Rashevsky]] at the [[University of Chicago]]. He remained at the University of Chicago until 1964,<ref name="rosen-enterprises1">[http://www.rosen-enterprises.com/RobertRosen/rrosenautobio.html "Autobiographical Reminiscences of Robert Rosen"].</ref> later moving to the University of Buffalo — now part of the [[State University of New York]] (SUNY) — at [[Buffalo, New York|Buffalo]] on a full associate professorship, while holding a joint appointment at the Center for Theoretical Biology.
 
Rosen was born on June 27, 1934 in [[Brownsville, Brooklyn|Brownsville]] (a section of [[Brooklyn]]), in [[New York City]]. He studied biology, mathematics, physics, philosophy, and history; particularly, the history of science. In 1959 he obtained a PhD in relational biology, a specialization within the broader field of [[Mathematical Biology]], under the guidance of Professor [[Nicolas Rashevsky]] at the [[University of Chicago]]. He remained at the University of Chicago until 1964,<ref name="rosen-enterprises1">[http://www.rosen-enterprises.com/RobertRosen/rrosenautobio.html "Autobiographical Reminiscences of Robert Rosen"].</ref> later moving to the University of Buffalo — now part of the [[State University of New York]] (SUNY) — at [[Buffalo, New York|Buffalo]] on a full associate professorship, while holding a joint appointment at the Center for Theoretical Biology.
   第53行: 第55行:     
== Research ==
 
== Research ==
 +
 +
== 研究 ==
 
Rosen's research was concerned with the most fundamental aspects of biology, specifically the questions "What is life?" and "Why are living organisms alive?". A few of the major themes in his work were:
 
Rosen's research was concerned with the most fundamental aspects of biology, specifically the questions "What is life?" and "Why are living organisms alive?". A few of the major themes in his work were:
 
* developing a specific definition of [[complexity]] based on [[category theory|category theoretic]] models of autonomous living organisms
 
* developing a specific definition of [[complexity]] based on [[category theory|category theoretic]] models of autonomous living organisms
第130行: 第134行:  
=== Complexity and complex scientific models: (''M,R'') systems ===
 
=== Complexity and complex scientific models: (''M,R'') systems ===
   −
=== Complexity and complex scientific models: (M,R) systems ===
+
=== 复杂性和复杂科学模型:(M,R)系统 ===  
 
  −
= 复杂性和复杂科学模型:(M,R)系统 =  
      
The clarification of the distinction between simple and [[complex system|complex scientific models]] became in later years a major goal of Rosen's published reports. Rosen maintained that modeling is at the very essence of science and thought. His book [[Anticipatory Systems; Philosophical, Mathematical, and Methodological Foundations|''Anticipatory Systems'']]<ref>''Anticipatory Systems: Philosophical, Mathematical, and  Methodological Foundations'', Robert Rosen, 2nd edition, with contributions by Judith Rosen, John J. Klineman and Mihai Nadin, 2012, lx + 472 pp., Springer, New York {{ISBN|978-1-4614-1268-7}}</ref> describes, in detail, what he termed the ''modeling relation''. He showed the deep differences between a true modeling relation and a [[simulation]], the latter not based on such a modeling relation.
 
The clarification of the distinction between simple and [[complex system|complex scientific models]] became in later years a major goal of Rosen's published reports. Rosen maintained that modeling is at the very essence of science and thought. His book [[Anticipatory Systems; Philosophical, Mathematical, and Methodological Foundations|''Anticipatory Systems'']]<ref>''Anticipatory Systems: Philosophical, Mathematical, and  Methodological Foundations'', Robert Rosen, 2nd edition, with contributions by Judith Rosen, John J. Klineman and Mihai Nadin, 2012, lx + 472 pp., Springer, New York {{ISBN|978-1-4614-1268-7}}</ref> describes, in detail, what he termed the ''modeling relation''. He showed the deep differences between a true modeling relation and a [[simulation]], the latter not based on such a modeling relation.
第268行: 第270行:  
埃尔温·薛定谔在他1945年的著作《生命是什么?罗森在《生命本身》一书和他随后出版的《论生命本身》一书中对这些问题进行了批判性的讨论。注释,作者朱迪思 · 罗森,拥有她父亲的著作的版权: 罗森的分析有些混乱是由于生活本身的错误。例如,引用(m { ,} r)-Systems 的图表有多个错误; 这些错误在 Rosen 的书稿中不存在。《预期系统; 哲学,数学,和方法论基础》一书有相同的图表,正确地表示。
 
埃尔温·薛定谔在他1945年的著作《生命是什么?罗森在《生命本身》一书和他随后出版的《论生命本身》一书中对这些问题进行了批判性的讨论。注释,作者朱迪思 · 罗森,拥有她父亲的著作的版权: 罗森的分析有些混乱是由于生活本身的错误。例如,引用(m { ,} r)-Systems 的图表有多个错误; 这些错误在 Rosen 的书稿中不存在。《预期系统; 哲学,数学,和方法论基础》一书有相同的图表,正确地表示。
   −
==Comparison with other theories of life==
+
===Comparison with other theories of life===
   −
==与其他生命理论的比较 ==
+
===与其他生命理论的比较 ===
 
(''M,R'') systems constitute just one of several current theories of life, including the [[chemoton]]<ref name="gantibook">{{cite book| isbn= 9780198507260| title = The Principles of Life | last = Gánti | first = Tibor |publisher = Oxford University Press | date = 2003|editor1 = Eörs Száthmary | editor2 = James Griesemer}}</ref> of [[Tibor Gánti]], the [[Hypercycle (chemistry)|hypercycle]] of [[Manfred Eigen]] and [[Peter Schuster]],<ref>{{cite journal | doi= 10.11007/bf00450633|last1 = Eigen |first1 = M| last2 = Schuster |first2 =P | title = The hypercycle: a principle of natural self-organization. A: emergence of the hypercycle| journal= Naturwissenschaften|volume = 64|issue = 11|pages = 541–565}}</ref><ref>{{cite journal | doi= 10.1007/bf00420631|last1 = Eigen |first1 = M| last2 = Schuster |first2 =P | title = The hypercycle: a principle of natural self-organization. B: the abstract hypercycle| journal= Naturwissenschaften|volume = 65|issue = 1 |pages = 7–41}}</ref>
 
(''M,R'') systems constitute just one of several current theories of life, including the [[chemoton]]<ref name="gantibook">{{cite book| isbn= 9780198507260| title = The Principles of Life | last = Gánti | first = Tibor |publisher = Oxford University Press | date = 2003|editor1 = Eörs Száthmary | editor2 = James Griesemer}}</ref> of [[Tibor Gánti]], the [[Hypercycle (chemistry)|hypercycle]] of [[Manfred Eigen]] and [[Peter Schuster]],<ref>{{cite journal | doi= 10.11007/bf00450633|last1 = Eigen |first1 = M| last2 = Schuster |first2 =P | title = The hypercycle: a principle of natural self-organization. A: emergence of the hypercycle| journal= Naturwissenschaften|volume = 64|issue = 11|pages = 541–565}}</ref><ref>{{cite journal | doi= 10.1007/bf00420631|last1 = Eigen |first1 = M| last2 = Schuster |first2 =P | title = The hypercycle: a principle of natural self-organization. B: the abstract hypercycle| journal= Naturwissenschaften|volume = 65|issue = 1 |pages = 7–41}}</ref>
<ref>{{cite journal | doi= 10.1007/bf00420631|last1 = Eigen |first1 = M| last2 = Schuster |first2 =P | title = The hypercycle: a principle of natural self-organization. C: the realistic hypercycle| journal= Naturwissenschaften|volume = 65|issue = 7 |pages = 41–369}}</ref> [[Autopoiesis|autopoiesis]] (or ''self-building'')<ref>{{cite book| last1=Maturana |first1 = H. R.|last2 =Varela|first2 = F. |title = Autopoiesis and cognition: the realisation of the living|date=1980|publisher= D. Reidel Publishing Company| place = Dordrecht}}</ref> of [[Humberto Maturana]] and [[Francisco Varela]], and the [[Autocatalytic set|autocatalytic sets]]<ref>{{cite journal | doi= 10.1016/0022-5193(69)90015-0|last1 = Kauffman|first1= S. A. |title = Metabolic stability and epigenesis in randomly constructed genetic nets| journal = J. Theor. Biol. |volume =22|issue=3|date=1969|pages=437–467}}</ref> of [[Stuart Kauffman]], similar to an earlier proposal by [[Freeman Dyson]].<ref>{{cite journal | doi= 10.1007/bf01733901 | title =A model for the origin of life| last = Dyson| first = F. J.|journal = J. Mol. Evol.| volume = 18| issue = 5| pages=344–350| date =1982}}</ref>  
+
<ref>{{cite journal | doi= 10.1007/bf00420631|last1 = Eigen |first1 = M| last2 = Schuster |first2 =P | title = The hypercycle: a principle of natural self-organization. C: the realistic hypercycle| journal= Naturwissenschaften|volume = 65|issue = 7 |pages = 41–369}}</ref> [[autopoiesis]] (or ''self-building'')<ref>{{cite book| last1=Maturana |first1 = H. R.|last2 =Varela|first2 = F. |title = Autopoiesis and cognition: the realisation of the living|date=1980|publisher= D. Reidel Publishing Company| place = Dordrecht}}</ref> of [[Humberto Maturana]] and [[Francisco Varela]], and the [[Autocatalytic set|autocatalytic sets]]<ref>{{cite journal | doi= 10.1016/0022-5193(69)90015-0|last1 = Kauffman|first1= S. A. |title = Metabolic stability and epigenesis in randomly constructed genetic nets| journal = J. Theor. Biol. |volume =22|issue=3|date=1969|pages=437–467}}</ref> of [[Stuart Kauffman]], similar to an earlier proposal by [[Freeman Dyson]].<ref>{{cite journal | doi= 10.1007/bf01733901 | title =A model for the origin of life| last = Dyson| first = F. J.|journal = J. Mol. Evol.| volume = 18| issue = 5| pages=344–350| date =1982}}</ref>  
 
All of these (including (''M,R'') systems) found their original inspiration in Erwin Schrödinger's book ''What is Life?''<ref>{{cite book| last1 = Schrödinger| first1 = Erwin|title = What is Life? |publisher = Cambridge University Press|date = 1944}}</ref> but at first they appear to have little in common with one another, largely because the authors did not communicate with one another, and none of them made any reference in their principal publications to any of the other theories.  Nonetheless, there are more similarities than may be obvious at first sight, for example between Gánti and Rosen.<ref>{{cite journal | doi= 10.1016/j.jtbi.2015.05.015|title = Tibor Gánti and Robert Rosen: contrasting approaches to the same problem|last1 =Cornish-Bowden | first1 =A.|journal= J. Theor. Biol. |volume = 381|pages = 6–10|date=2015}}</ref> Until recently<ref>{{cite journal | doi= 10.1016/j.jtbi.2011.06.033 |title= From ''L’Homme Machine'' to metabolic closure: steps towards understanding life|last1 = Letelier|first1 = J C|last2=Cárdenas |first2 =M L|last3=Cornish-Bowden|first3 =A |journal=J. Theor. Biol. | date = 2011 | volume= 286|issue= 1 | pages= 100–113}}</ref><ref>{{cite journal | doi= 10.1016/j.biosystems.2014.03.002| title=Time rescaling and pattern formation in biological evolution| journal =BioSystems|volume=123 |pages= 19–26|date= 2014|last=Igamberdiev|first=A.U.}}</ref><ref>{{cite journal | doi= 10.1016/j.biosystems.2019.104063
 
All of these (including (''M,R'') systems) found their original inspiration in Erwin Schrödinger's book ''What is Life?''<ref>{{cite book| last1 = Schrödinger| first1 = Erwin|title = What is Life? |publisher = Cambridge University Press|date = 1944}}</ref> but at first they appear to have little in common with one another, largely because the authors did not communicate with one another, and none of them made any reference in their principal publications to any of the other theories.  Nonetheless, there are more similarities than may be obvious at first sight, for example between Gánti and Rosen.<ref>{{cite journal | doi= 10.1016/j.jtbi.2015.05.015|title = Tibor Gánti and Robert Rosen: contrasting approaches to the same problem|last1 =Cornish-Bowden | first1 =A.|journal= J. Theor. Biol. |volume = 381|pages = 6–10|date=2015}}</ref> Until recently<ref>{{cite journal | doi= 10.1016/j.jtbi.2011.06.033 |title= From ''L’Homme Machine'' to metabolic closure: steps towards understanding life|last1 = Letelier|first1 = J C|last2=Cárdenas |first2 =M L|last3=Cornish-Bowden|first3 =A |journal=J. Theor. Biol. | date = 2011 | volume= 286|issue= 1 | pages= 100–113}}</ref><ref>{{cite journal | doi= 10.1016/j.biosystems.2014.03.002| title=Time rescaling and pattern formation in biological evolution| journal =BioSystems|volume=123 |pages= 19–26|date= 2014|last=Igamberdiev|first=A.U.}}</ref><ref>{{cite journal | doi= 10.1016/j.biosystems.2019.104063
 
|last2=Cárdenas |first2 =M L|last1=Cornish-Bowden|first1 =A|title =Contrasting theories of life: historical context, current theories. In search of an ideal theory|journal=BioSystems|volume =188|pages=104063|date=2020}}</ref> there have been almost no attempts to compare the different theories and discuss them together.
 
|last2=Cárdenas |first2 =M L|last1=Cornish-Bowden|first1 =A|title =Contrasting theories of life: historical context, current theories. In search of an ideal theory|journal=BioSystems|volume =188|pages=104063|date=2020}}</ref> there have been almost no attempts to compare the different theories and discuss them together.
第282行: 第284行:  
(m,r)系统只是当前几个生命理论中的一个,包括 Tibor Gánti 的 chemoton,Manfred Eigen 和 Peter Schuster 的超循环,Humberto Maturana 和 Francisco Varela 的自创生(或自我构建) ,以及 Stuart Kauffman 的自催化集,类似于 Dyson 早期的提议。所有这些(包括(m,r)系统)的灵感都来源于埃尔温·薛定谔的《生命是什么?但起初他们之间似乎没有什么共同点,主要是因为作者之间没有交流,他们在主要出版物中也没有提到任何其他理论。尽管如此,两者之间的相似之处比乍看之下可能显而易见的要多,例如 Gánti 和罗森大厦之间的相似之处。直到最近,几乎没有人试图比较不同的理论并一起讨论它们。
 
(m,r)系统只是当前几个生命理论中的一个,包括 Tibor Gánti 的 chemoton,Manfred Eigen 和 Peter Schuster 的超循环,Humberto Maturana 和 Francisco Varela 的自创生(或自我构建) ,以及 Stuart Kauffman 的自催化集,类似于 Dyson 早期的提议。所有这些(包括(m,r)系统)的灵感都来源于埃尔温·薛定谔的《生命是什么?但起初他们之间似乎没有什么共同点,主要是因为作者之间没有交流,他们在主要出版物中也没有提到任何其他理论。尽管如此,两者之间的相似之处比乍看之下可能显而易见的要多,例如 Gánti 和罗森大厦之间的相似之处。直到最近,几乎没有人试图比较不同的理论并一起讨论它们。
   −
==Last Universal Common Ancestor (LUCA)==
+
===Last Universal Common Ancestor (LUCA)===
   −
==最后的共同祖先(LUCA)==
+
===最后的共同祖先(LUCA)===
 
Some authors equate models of the origin of life with LUCA, the '''L'''ast '''U'''niversal '''C'''ommon '''A'''ncestor of all extant life.<ref>{{cite journal | doi= 10.3390/life11090872 | title = The Way forward for the Origin of Life: Prions and Prion-Like Molecules First Hypothesis| last1 =Jheeta | first1 =S.| last2 = Chatzitheodoridis| first2 =E. | last3 = Devine| first3 =Kevin| last4 = Block| first4 = J.|journal = Life |date =2021| volume = 11|issue = 9 |pages = 872
 
Some authors equate models of the origin of life with LUCA, the '''L'''ast '''U'''niversal '''C'''ommon '''A'''ncestor of all extant life.<ref>{{cite journal | doi= 10.3390/life11090872 | title = The Way forward for the Origin of Life: Prions and Prion-Like Molecules First Hypothesis| last1 =Jheeta | first1 =S.| last2 = Chatzitheodoridis| first2 =E. | last3 = Devine| first3 =Kevin| last4 = Block| first4 = J.|journal = Life |date =2021| volume = 11|issue = 9 |pages = 872
 
}}</ref>  This is a serious error resulting from failure to recognize that '''L''' refers to the ''last'' common ancestor, not to the ''first'' ancestor, which is much older: a large amount of evolution occurred before the appearance of LUCA.<ref>{{cite journal | doi= 10.1016/j.jtbi.2017.05.023 | title = Life before LUCA |last2=Cárdenas |first2 =M L|last1=Cornish-Bowden|first1 =A| journal = J. Theor. Biol. | volume = 434 | pages=68–74}}</ref>
 
}}</ref>  This is a serious error resulting from failure to recognize that '''L''' refers to the ''last'' common ancestor, not to the ''first'' ancestor, which is much older: a large amount of evolution occurred before the appearance of LUCA.<ref>{{cite journal | doi= 10.1016/j.jtbi.2017.05.023 | title = Life before LUCA |last2=Cárdenas |first2 =M L|last1=Cornish-Bowden|first1 =A| journal = J. Theor. Biol. | volume = 434 | pages=68–74}}</ref>
第302行: 第304行:     
== Publications ==
 
== Publications ==
 +
 +
== 出版物 ==
 
Rosen wrote several books and many articles. A selection of his published books is as follows:
 
Rosen wrote several books and many articles. A selection of his published books is as follows:
 
* 1970, ''Dynamical Systems Theory in Biology'' New York: Wiley Interscience.
 
* 1970, ''Dynamical Systems Theory in Biology'' New York: Wiley Interscience.
第343行: 第347行:     
== References ==
 
== References ==
 +
 +
== 参考文献 ==
 
{{Reflist|2}}
 
{{Reflist|2}}
    
== Further reading ==
 
== Further reading ==
 +
 +
== 进一步的阅读 ==
 
* {{cite journal | last1 = Baianu | first1 = I. C. | year = 2006 | title = Robert Rosen's Work and Complex Systems Biology | journal = Axiomathes | volume = 16 | issue = 1–2| pages = 25–34 | doi=10.1007/s10516-005-4204-z| s2cid = 4673166 }}
 
* {{cite journal | last1 = Baianu | first1 = I. C. | year = 2006 | title = Robert Rosen's Work and Complex Systems Biology | journal = Axiomathes | volume = 16 | issue = 1–2| pages = 25–34 | doi=10.1007/s10516-005-4204-z| s2cid = 4673166 }}
 
* {{cite journal | last1 = Baianu | first1 = I.C. | year = 1970 | title = Organismic Supercategories: II. On Multistable Systems | url = http://cogprints.org/7752/3/OSIImultist1970.pdf| journal = Bulletin of Mathematical Biophysics | volume = 32 | issue = 4| pages = 539–561 | doi=10.1007/bf02476770 | pmid=4327361}}
 
* {{cite journal | last1 = Baianu | first1 = I.C. | year = 1970 | title = Organismic Supercategories: II. On Multistable Systems | url = http://cogprints.org/7752/3/OSIImultist1970.pdf| journal = Bulletin of Mathematical Biophysics | volume = 32 | issue = 4| pages = 539–561 | doi=10.1007/bf02476770 | pmid=4327361}}
第371行: 第379行:  
* "Reminiscences of Nicolas Rashevsky". (Late) 1972. by Robert Rosen.
 
* "Reminiscences of Nicolas Rashevsky". (Late) 1972. by Robert Rosen.
 
*  
 
*  
  −
= = 进一步解读 = = =
  −
*
  −
*
  −
*
  −
* 艾萨瑟,m.w。年: 1981年,“一种适合生物学的逻辑形式。《理论生物学的进展》 ,第6卷,学术出版社,纽约和伦敦,第23-62页。
  −
* Christopher Landauer 和 Kirstie l. Bellman 理论生物学: 生物体和机制
  −
*
  −
*
  −
*
  −
*
  −
*
  −
*
  −
* 《 Nicolas Rashevsky 回忆录》。《1972》罗伯特 · 罗森著。
   
*
 
*
    
== External links ==
 
== External links ==
 +
 +
== 外部链接 ==
 
{{wikiquote}}
 
{{wikiquote}}
 
* [http://www.panmere.com/?page_id=10 Panmere website on Rosennean Complexity]: "''Judith Rosen's website provides free biographical information, discussions of her father's work, and also free reprints of Robert Rosen's work''".
 
* [http://www.panmere.com/?page_id=10 Panmere website on Rosennean Complexity]: "''Judith Rosen's website provides free biographical information, discussions of her father's work, and also free reprints of Robert Rosen's work''".
49

个编辑

导航菜单