更改

跳到导航 跳到搜索
删除183字节 、 2022年2月5日 (六) 13:20
无编辑摘要
第181行: 第181行:  
The same applies to herbivores, animals that eat plants, and the plants that they eat.  Paul R. Ehrlich and Peter H. Raven in 1964 proposed the theory of escape and radiate coevolution to describe the evolutionary diversification of plants and butterflies. In the Rocky Mountains, red squirrels and crossbills (seed-eating birds) compete for seeds of the lodgepole pine. The squirrels get at pine seeds by gnawing through the cone scales, whereas the crossbills get at the seeds by extracting them with their unusual crossed mandibles. In areas where there are squirrels, the lodgepole's cones are heavier, and have fewer seeds and thinner scales, making it more difficult for squirrels to get at the seeds. Conversely, where there are crossbills but no squirrels, the cones are lighter in construction, but have thicker scales, making it more difficult for crossbills to get at the seeds. The lodgepole's cones are in an evolutionary arms race with the two kinds of herbivore. and the two following pages of the web article.
 
The same applies to herbivores, animals that eat plants, and the plants that they eat.  Paul R. Ehrlich and Peter H. Raven in 1964 proposed the theory of escape and radiate coevolution to describe the evolutionary diversification of plants and butterflies. In the Rocky Mountains, red squirrels and crossbills (seed-eating birds) compete for seeds of the lodgepole pine. The squirrels get at pine seeds by gnawing through the cone scales, whereas the crossbills get at the seeds by extracting them with their unusual crossed mandibles. In areas where there are squirrels, the lodgepole's cones are heavier, and have fewer seeds and thinner scales, making it more difficult for squirrels to get at the seeds. Conversely, where there are crossbills but no squirrels, the cones are lighter in construction, but have thicker scales, making it more difficult for crossbills to get at the seeds. The lodgepole's cones are in an evolutionary arms race with the two kinds of herbivore. and the two following pages of the web article.
   −
这同样适用于草食动物、植食动物,以及它们吃的植物。1964年,保罗·R·欧里希和彼得·R·瑞文提出了逃逸和辐射的共同演化理论来描述植物和蝴蝶的进化多样性。<ref>{{cite journal |last1=Ehrlich |first1=Paul R. |author1-link=Paul R. Ehrlich |last2=Raven |first2=Peter H. |author2-link= Peter H. Raven |year=1964 |title=Butterflies and Plants: A Study in Coevolution |journal=Evolution |volume=18 |issue=4 |pages=586–608 |doi=10.2307/2406212 |jstor=2406212}}</ref>在落基山脉,红松鼠和斑鸠(食种子的鸟)争夺海滩松的种子。松鼠通过啃咬松果鳞片来获取松子,而交喙则通过它们不寻常的交叉下颚来获取松子。在有松鼠的地方,海滩鱼的球果更重,种子更少,鳞片更薄,这使得松鼠更难获得种子。相反,如果有交喙,但没有松鼠,球果的结构较轻,但有较厚的鳞片,使交喙更难以获得种子。海滩上的锥形细胞与这两种食草动物进行着一场进化中的军备竞赛。以及接下来两页的网络文章。<ref name="Berkeley">{{cite web |title=Coevolution |url=https://evolution.berkeley.edu/evolibrary/article/evo_33 |publisher=University of California Berkeley |access-date=17 January 2017}} and the two following pages of the web article.</ref>
+
这同样适用于草食动物、植食动物,以及它们吃的植物。1964年,保罗·R·欧里希和彼得·R·瑞文提出了逃逸和辐射的共同演化理论来描述植物和蝴蝶的进化多样性。<ref>{{cite journal |last1=Ehrlich |first1=Paul R. |author1-link=Paul R. Ehrlich |last2=Raven |first2=Peter H. |author2-link= Peter H. Raven |year=1964 |title=Butterflies and Plants: A Study in Coevolution |journal=Evolution |volume=18 |issue=4 |pages=586–608 |doi=10.2307/2406212 |jstor=2406212}}</ref>在落基山脉,红松鼠和斑鸠(食种子的鸟)争夺海滩松的种子。松鼠通过啃咬松果鳞片来获取松子,而斑鸠则通过它们不寻常的交叉下颚来获取松子。在有松鼠的地方,海滩松的球果更重、种子更少、鳞片更薄,这使得松鼠更难获得种子。相反,如果有斑鸠,但没有松鼠,球果的结构较轻,但有较厚的鳞片,使交喙更难以获得种子。海滩上的锥形细胞与这两种食草动物进行着一场进化中的军备竞赛,在接下来的两个段落中也是这样。<ref name="Berkeley">{{cite web |title=Coevolution |url=https://evolution.berkeley.edu/evolibrary/article/evo_33 |publisher=University of California Berkeley |access-date=17 January 2017}} and the two following pages of the web article.</ref>
    
[[File:Drosophila.melanogaster.couple.2.jpg|thumb|upright|[[Sexual conflict]] has been studied in ''[[Drosophila melanogaster]]'' (shown mating, male on right).|链接=Special:FilePath/Drosophila.melanogaster.couple.2.jpg]]
 
[[File:Drosophila.melanogaster.couple.2.jpg|thumb|upright|[[Sexual conflict]] has been studied in ''[[Drosophila melanogaster]]'' (shown mating, male on right).|链接=Special:FilePath/Drosophila.melanogaster.couple.2.jpg]]
   −
==Competition==
+
==竞争行为==
 
{{Main|Intraspecific competition|Interspecific competition}}
 
{{Main|Intraspecific competition|Interspecific competition}}
   第192行: 第192行:  
Both intraspecific competition, with features such as sexual conflict and sexual selection, and interspecific competition, such as between predators, may be able to drive coevolution.
 
Both intraspecific competition, with features such as sexual conflict and sexual selection, and interspecific competition, such as between predators, may be able to drive coevolution.
   −
无论是具有如性冲突<ref>{{cite journal |doi=10.1098/rstb.2005.1785 |title=Sexual conflict over mating and fertilization: An overview |year=2006 |last1=Parker |first1=G. A. |journal=Philosophical Transactions of the Royal Society B: Biological Sciences |volume=361 |issue=1466 |pages=235–59 |pmid=16612884 |pmc=1569603}}</ref>和性选择<ref name="UCL">{{cite web|title=Biol 2007 - Coevolution|url=https://www.ucl.ac.uk/~ucbhdjm/courses/b242/Coevol/Coevol.html|publisher=[[University College, London]]|access-date=19 January 2017}}</ref>等特征的种内竞争,还是具有如食肉动物之间的种间竞争,都可能推动共同进化。<ref>{{cite journal |last1=Connell |first1=Joseph H. |s2cid=5576868 |title=Diversity and the Coevolution of Competitors, or the Ghost of Competition Past |journal=Oikos |date=October 1980 |volume=35 |issue=2 |pages=131–138 |doi=10.2307/3544421 |jstor=3544421}}</ref>  
+
无论是具有如性冲突<ref>{{cite journal |doi=10.1098/rstb.2005.1785 |title=Sexual conflict over mating and fertilization: An overview |year=2006 |last1=Parker |first1=G. A. |journal=Philosophical Transactions of the Royal Society B: Biological Sciences |volume=361 |issue=1466 |pages=235–59 |pmid=16612884 |pmc=1569603}}</ref>和性选择<ref name="UCL">{{cite web|title=Biol 2007 - Coevolution|url=https://www.ucl.ac.uk/~ucbhdjm/courses/b242/Coevol/Coevol.html|publisher=[[University College, London]]|access-date=19 January 2017}}</ref>等特征的种内竞争,还是具有如食肉动物之间的种间竞争,都可能推动共同演化。<ref>{{cite journal |last1=Connell |first1=Joseph H. |s2cid=5576868 |title=Diversity and the Coevolution of Competitors, or the Ghost of Competition Past |journal=Oikos |date=October 1980 |volume=35 |issue=2 |pages=131–138 |doi=10.2307/3544421 |jstor=3544421}}</ref>  
    
== Multispecies ==
 
== Multispecies ==
第205行: 第205行:  
The types of coevolution listed so far have been described as if they operated pairwise (also called specific coevolution), in which traits of one species have evolved in direct response to traits of a second species, and vice versa. This is not always the case. Another evolutionary mode arises where evolution is reciprocal, but is among a group of species rather than exactly two. This is variously called guild or diffuse coevolution. For instance, a trait in several species of flowering plant, such as offering its nectar at the end of a long tube, can coevolve with a trait in one or several species of pollinating insects, such as a long proboscis. More generally, flowering plants are pollinated by insects from different families including bees, flies, and beetles, all of which form a broad guild of pollinators which respond to the nectar or pollen produced by flowers.Juenger, Thomas, and Joy Bergelson. "Pairwise versus diffuse natural selection and the multiple herbivores of scarlet gilia, Ipomopsis aggregata." Evolution (1998): 1583–1592.
 
The types of coevolution listed so far have been described as if they operated pairwise (also called specific coevolution), in which traits of one species have evolved in direct response to traits of a second species, and vice versa. This is not always the case. Another evolutionary mode arises where evolution is reciprocal, but is among a group of species rather than exactly two. This is variously called guild or diffuse coevolution. For instance, a trait in several species of flowering plant, such as offering its nectar at the end of a long tube, can coevolve with a trait in one or several species of pollinating insects, such as a long proboscis. More generally, flowering plants are pollinated by insects from different families including bees, flies, and beetles, all of which form a broad guild of pollinators which respond to the nectar or pollen produced by flowers.Juenger, Thomas, and Joy Bergelson. "Pairwise versus diffuse natural selection and the multiple herbivores of scarlet gilia, Ipomopsis aggregata." Evolution (1998): 1583–1592.
   −
到目前为止,所列出的共同进化类型被描述为是两两运作的(也称为特定共同进化) ,其中一个物种的特征是直接响应第二个物种的特征而进化的,反之亦然。但事实并非总是如此。另一种进化模式出现在进化是相互的,但是是在一组物种之间而不是两个物种之间。这被称为公会或漫反射共同进化。例如,几种开花植物的一个特征,例如在长管的末端提供花蜜,可以与一种或几种传粉昆虫的特征共同进化,例如长喙。更一般地说,被子植物是由来自不同科的昆虫授粉的,包括蜜蜂、苍蝇和甲虫,所有这些昆虫形成了一个广泛的授粉者协会,它们对花朵产生的花蜜或花粉作出反应。朱恩格、托马斯和乔伊 · 贝尔格森。成对自然选择与扩散自然选择以及猩红吉利亚的多种食草动物——绿芽菜(Ipomopsis aggregata)进化(1998) : 1583-1592。
+
到目前为止,所列出的共同演化类型被描述为是两两运作的(也称为特定共同演化),其中一个物种的特征是直接响应第二个物种的特征而进化的,反之亦然。但事实并非总是如此。另一种进化模式出现在进化是相互的,但是是在一组物种之间而不是两个物种之间。这被称为公会或漫反射共同进化。例如,几种开花植物的一个特征,例如在长管的末端提供花蜜,可以与一种或几种传粉昆虫的特征共同进化,例如长喙。更一般地说,被子植物是由来自不同科的昆虫授粉的,包括蜜蜂、苍蝇和甲虫,所有这些昆虫形成了一个广泛的授粉者协会,它们对花朵产生的花蜜或花粉作出反应。
    
== Geographic mosaic theory ==
 
== Geographic mosaic theory ==
68

个编辑

导航菜单