第229行: |
第229行: |
| thumb|upright=1.8|left| The fast cycle operates through the biosphere, including exchanges between land, atmosphere, and oceans. The yellow numbers are natural fluxes of carbon in billions of tons (gigatons) per year. Red are human contributions and white are stored carbon. | | thumb|upright=1.8|left| The fast cycle operates through the biosphere, including exchanges between land, atmosphere, and oceans. The yellow numbers are natural fluxes of carbon in billions of tons (gigatons) per year. Red are human contributions and white are stored carbon. |
| | | |
− | 快速循环在生物圈中运行,包括陆地、大气层和海洋之间的交换。黄色数字是每年数十亿吨碳的自然通量。红色是人类的贡献,白色是储存的碳。
| + | 快速循环贯穿生物圈,包括陆地、大气和海洋之间的交换。黄色数字表示每年的自然碳通量,以十亿吨(gigatons)为单位。红色数字表示人类的贡献,白色数字表示被储存的碳。 |
| | | |
| [[File:Rock cycle nps.PNG|thumb|upright=2.25|right| {{center|The slow cycle operates through rocks, including volcanic and tectonic activity}}]] | | [[File:Rock cycle nps.PNG|thumb|upright=2.25|right| {{center|The slow cycle operates through rocks, including volcanic and tectonic activity}}]] |
第243行: |
第243行: |
| The slow cycle is illustrated in the diagram above on the right. It involves medium to long-term geochemical processes belonging to the rock cycle. The exchange between the ocean and atmosphere can take centuries, and the weathering of rocks can take millions of years. Carbon in the ocean precipitates to the ocean floor where it can form sedimentary rock and be subducted into the earth's mantle. Mountain building processes result in the return of this geologic carbon to the Earth's surface. There the rocks are weathered and carbon is returned to the atmosphere by degassing and to the ocean by rivers. Other geologic carbon returns to the ocean through the hydrothermal emission of calcium ions. In a given year between 10 and 100 million tonnes of carbon moves around this slow cycle. This includes volcanoes returning geologic carbon directly to the atmosphere in the form of carbon dioxide. However, this is less than one percent of the carbon dioxide put into the atmosphere by burning fossil fuels. | | The slow cycle is illustrated in the diagram above on the right. It involves medium to long-term geochemical processes belonging to the rock cycle. The exchange between the ocean and atmosphere can take centuries, and the weathering of rocks can take millions of years. Carbon in the ocean precipitates to the ocean floor where it can form sedimentary rock and be subducted into the earth's mantle. Mountain building processes result in the return of this geologic carbon to the Earth's surface. There the rocks are weathered and carbon is returned to the atmosphere by degassing and to the ocean by rivers. Other geologic carbon returns to the ocean through the hydrothermal emission of calcium ions. In a given year between 10 and 100 million tonnes of carbon moves around this slow cycle. This includes volcanoes returning geologic carbon directly to the atmosphere in the form of carbon dioxide. However, this is less than one percent of the carbon dioxide put into the atmosphere by burning fossil fuels. |
| | | |
− | 缓慢的循环在上面右边的图表中显示出来。它涉及中长期的地球化学过程,属于岩石旋回。海洋和大气之间的交换可能需要几个世纪,岩石的风化可能需要几百万年。海洋中的碳沉淀到海底,在那里它可以形成沉积岩并潜入地幔。造山过程导致这种地质碳返回到地球表面。在那里,岩石被风化,碳通过排气返回大气层,通过河流流入海洋。其他地质碳通过钙离子的水热释放返回海洋。在给定的一年中,1000万到1亿吨的碳在这个缓慢的循环周期中移动。这包括火山以二氧化碳的形式将地质碳直接返回大气层。然而,这还不到燃烧化石燃料排放到大气中的二氧化碳的百分之一。
| + | 慢速循环如右上图所示,它涉及到岩石循环中的中长期地球化学过程。海洋和大气之间的交换可能需要几个世纪,而岩石的风化可能需要数百万年。海洋中的碳沉积在海底,在那里形成沉积岩并潜入地幔。造山运动使得这种地质碳回到地表。在地表,岩石被风化,碳通过脱气作用返回大气,通过河流返回海洋。其它的地质碳通过含钙离子热液的排放回到海洋。在一年中,有一千万至一亿吨的碳在这个缓慢的循环中移动。这包括火山将地质碳以二氧化碳的形式直接返还大气。然而,这还不足燃烧化石燃料排放到大气中的二氧化碳的百分之一。 |
| | | |
| ==Deep cycles== | | ==Deep cycles== |
第252行: |
第252行: |
| The terrestrial subsurface is the largest reservoir of carbon on earth, containing 14–135 Pg of carbon and 2–19% of all biomass. Microorganisms drive organic and inorganic compound transformations in this environment and thereby control biogeochemical cycles. Current knowledge of the microbial ecology of the subsurface is primarily based on 16S ribosomal RNA (rRNA) gene sequences. Recent estimates show that <8% of 16S rRNA sequences in public databases derive from subsurface organisms and only a small fraction of those are represented by genomes or isolates. Thus, there is remarkably little reliable information about microbial metabolism in the subsurface. Further, little is known about how organisms in subsurface ecosystems are metabolically interconnected. Some cultivation-based studies of syntrophic consortia and small-scale metagenomic analyses of natural communities suggest that organisms are linked via metabolic handoffs: the transfer of redox reaction products of one organism to another. However, no complex environments have been dissected completely enough to resolve the metabolic interaction networks that underpin them. This restricts the ability of biogeochemical models to capture key aspects of the carbon and other nutrient cycles. New approaches such as genome-resolved metagenomics, an approach that can yield a comprehensive set of draft and even complete genomes for organisms without the requirement for laboratory isolation have the potential to provide this critical level of understanding of biogeochemical processes. 50px Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License . | | The terrestrial subsurface is the largest reservoir of carbon on earth, containing 14–135 Pg of carbon and 2–19% of all biomass. Microorganisms drive organic and inorganic compound transformations in this environment and thereby control biogeochemical cycles. Current knowledge of the microbial ecology of the subsurface is primarily based on 16S ribosomal RNA (rRNA) gene sequences. Recent estimates show that <8% of 16S rRNA sequences in public databases derive from subsurface organisms and only a small fraction of those are represented by genomes or isolates. Thus, there is remarkably little reliable information about microbial metabolism in the subsurface. Further, little is known about how organisms in subsurface ecosystems are metabolically interconnected. Some cultivation-based studies of syntrophic consortia and small-scale metagenomic analyses of natural communities suggest that organisms are linked via metabolic handoffs: the transfer of redox reaction products of one organism to another. However, no complex environments have been dissected completely enough to resolve the metabolic interaction networks that underpin them. This restricts the ability of biogeochemical models to capture key aspects of the carbon and other nutrient cycles. New approaches such as genome-resolved metagenomics, an approach that can yield a comprehensive set of draft and even complete genomes for organisms without the requirement for laboratory isolation have the potential to provide this critical level of understanding of biogeochemical processes. 50px Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License . |
| | | |
− | 陆地地下是地球上最大的碳储存库,含有14-135 Pg 的碳,占所有生物量的2-19% 。微生物在这种环境中推动有机和无机化合物的转变,从而控制生物地球化学循环。目前对地下微生物生态学的了解主要是基于16S 核糖体RNA 基因序列。最近的估计显示,公共数据库中的16s rRNA 序列中,少于8% 来自地下生物,其中只有一小部分由基因组或分离物表示。因此,关于地下微生物代谢的可靠信息非常少。此外,关于地下生态系统中的生物体是如何在新陈代谢上相互关联的,我们知之甚少。一些以培养为基础的联合营养研究和对自然群落的小规模宏基因组学分析表明,生物体之间是通过代谢传递联系起来的: 一种生物体的氧化还原反应产物转移到另一种生物体。然而,还没有一个复杂的环境被彻底剖析,足以解析支撑它们的代谢交互网络。这限制了生物地球化学模型捕捉碳和其他养分循环关键方面的能力。基因组分解宏基因组学等新的方法可以为生物体提供一套全面的草图甚至完整的基因组,而不需要实验室隔离,这种方法有可能提供对生物地球化学过程的这一关键水平的理解。50px 材料复制自这个来源,可以在知识共享署名4.0国际许可证下获得。
| + | 陆地地下是地球上最大的碳储库,含有14-135Pg的碳和总生物量的2-19%。微生物在这种环境下驱动有机和无机化合物的转化,从而控制生物地球化学循环。目前对于地下微生物生态学的了解主要是基于16S核糖体RNA(rRNA)基因序列。最近的估计显示,公共数据库中小于8%的16S rRNA序列来自于地下生物,且其中仅一小部分由基因组或分离物表示。因此,关于地下微生物代谢的可靠信息非常少。此外,关于地下生态系统中的生物体是如何在新陈代谢上互相关联的,我们知之甚少。一些基于栽培的同养群落研究和对自然群落的小规模宏基因组学分析表明,生物体通过代谢传递相联系:一个生物的氧化还原产物转移到另一生物。然而,还没有一个复杂的环境被彻底剖析,以解决支撑它们的代谢相互作用网络。这限制了生物地球化学模型捕捉碳和其他养分循环关键方面的能力。新的方法,如基因组解析宏基因组学,可以在无需实验室分离的情况下为生物体提供一套全面的草图甚至是完整的基因组,这种方法或许是理解生物地球化学过程的关键。 |
| | | |
| ==Some examples== | | ==Some examples== |
第303行: |
第303行: |
| | | |
| | | |
− | 目前许多生物地球化学循环的研究尚属首次。气候变化和人类活动的影响正在极大地改变这些相对未知的循环的速度、强度和平衡,其中包括:
| + | 许多生物地球化学循环正首次被研究。气候变化和人类影响正在极大地改变这些相对未知的循环的速度、强度和平衡,其中包括: |
| * 汞循环, | | * 汞循环, |
| * 多氯联苯的人为循环。文件: 寒地走灯藓/叶绿体在植物细胞和其他真核生物中进行光合作用。文件: 有机碳循环包括干酪根的流动 | | * 多氯联苯的人为循环。文件: 寒地走灯藓/叶绿体在植物细胞和其他真核生物中进行光合作用。文件: 有机碳循环包括干酪根的流动 |
第313行: |
第313行: |
| Biogeochemical cycles always involve active equilibrium states: a balance in the cycling of the element between compartments. However, overall balance may involve compartments distributed on a global scale. | | Biogeochemical cycles always involve active equilibrium states: a balance in the cycling of the element between compartments. However, overall balance may involve compartments distributed on a global scale. |
| | | |
− | 生物地球化学循环总是涉及活动平衡状态: 元素在区间循环中的平衡。然而,总体平衡可能涉及在全球范围内分布的部门。
| + | 生物地球化学循环总是涉及活动平衡状态:在各隔室之间元素循环的平衡。然而,总体平衡可能涉及分布在全球尺度上的隔室。 |
| | | |
| As biogeochemical cycles describe the movements of substances on the entire globe, the study of these is inherently multidisciplinary. The carbon cycle may be related to research in [[ecology]] and [[atmospheric sciences]].<ref>{{cite book|last1=McGuire|first=1A. D.|last2=Lukina|first2=N. V.|chapter=Biogeochemical cycles|editor-last1=Groisman|editor-first1=P.|editor-last2=Bartalev|editor-first2=S. A.|editor-last3=NEESPI Science Plan Development Team|title=Northern Eurasia earth science partnership initiative (NEESPI), Science plan overview|date=2007|pages=215–234|series=Global Planetary Change|volume=56|chapter-url=http://neespi.org/science/NEESPI_SP_chapters/SP_Chapter_3.2.pdf|access-date=20 November 2017|archive-date=5 March 2016|archive-url=https://web.archive.org/web/20160305025005/http://neespi.org/science/NEESPI_SP_chapters/SP_Chapter_3.2.pdf|url-status=live}}</ref> Biochemical dynamics would also be related to the fields of [[geology]] and [[pedology]].<ref>{{cite web|title=Distributed Active Archive Center for Biogeochemical Dynamics|url=http://daac.ornl.gov/|website=daac.ornl.gov|publisher=Oak Ridge National Laboratory|access-date=20 November 2017|archive-date=11 February 2011|archive-url=https://web.archive.org/web/20110211040758/http://daac.ornl.gov/|url-status=live}}</ref> | | As biogeochemical cycles describe the movements of substances on the entire globe, the study of these is inherently multidisciplinary. The carbon cycle may be related to research in [[ecology]] and [[atmospheric sciences]].<ref>{{cite book|last1=McGuire|first=1A. D.|last2=Lukina|first2=N. V.|chapter=Biogeochemical cycles|editor-last1=Groisman|editor-first1=P.|editor-last2=Bartalev|editor-first2=S. A.|editor-last3=NEESPI Science Plan Development Team|title=Northern Eurasia earth science partnership initiative (NEESPI), Science plan overview|date=2007|pages=215–234|series=Global Planetary Change|volume=56|chapter-url=http://neespi.org/science/NEESPI_SP_chapters/SP_Chapter_3.2.pdf|access-date=20 November 2017|archive-date=5 March 2016|archive-url=https://web.archive.org/web/20160305025005/http://neespi.org/science/NEESPI_SP_chapters/SP_Chapter_3.2.pdf|url-status=live}}</ref> Biochemical dynamics would also be related to the fields of [[geology]] and [[pedology]].<ref>{{cite web|title=Distributed Active Archive Center for Biogeochemical Dynamics|url=http://daac.ornl.gov/|website=daac.ornl.gov|publisher=Oak Ridge National Laboratory|access-date=20 November 2017|archive-date=11 February 2011|archive-url=https://web.archive.org/web/20110211040758/http://daac.ornl.gov/|url-status=live}}</ref> |
第319行: |
第319行: |
| As biogeochemical cycles describe the movements of substances on the entire globe, the study of these is inherently multidisciplinary. The carbon cycle may be related to research in ecology and atmospheric sciences. Biochemical dynamics would also be related to the fields of geology and pedology. | | As biogeochemical cycles describe the movements of substances on the entire globe, the study of these is inherently multidisciplinary. The carbon cycle may be related to research in ecology and atmospheric sciences. Biochemical dynamics would also be related to the fields of geology and pedology. |
| | | |
− | 由于生物地球化学循环描述了物质在整个地球上的运动,对这些运动的研究本质上是多学科的。碳循环可能与生态学和大气科学研究有关。生物化学动力学也与地质学和土壤学领域有关。
| + | 由于生物地球化学循环描述了整个地球上物质的运动,其研究本质上是多学科的。碳循环可能与生态学和大气科学研究有关。生化动力学也与地质学和土壤学领域有关。 |
| | | |
| ==History== | | ==History== |
第359行: |
第359行: |
| * 碳酸盐-硅酸盐循环 | | * 碳酸盐-硅酸盐循环 |
| * 生态循环 | | * 生态循环 |
− | * 大加速度 | + | * 大加速 |
| * 氢循环 | | * 氢循环 |
| * 海洋生物地球化学循环 | | * 海洋生物地球化学循环 |