更改

跳到导航 跳到搜索
删除129字节 、 2022年3月6日 (日) 12:33
无编辑摘要
第12行: 第12行:     
== 类型 ==
 
== 类型 ==
由热致模式作出的主要假设是,[[热风]]的大小可以改变,但方向不随高度变化,因此大气的斜压性可以用500mb和1000mb的位势高度面和它们之间的平均热风来模拟。<ref>{{cite book|last= Gates|first=W. Lawrence|title=Results Of Numerical Forecasting With The Barotropic And Thermotropic Atmospheric Models|date=August 1955|publisher=Air Force Cambridge Research Laboratories|location=[[Hanscom Air Force Base]]|url=http://handle.dtic.mil/100.2/AD101943}}</ref><ref>{{cite journal |last=Thompson|first=P. D.|author2=W. Lawrence Gates|title=A Test of Numerical Prediction Methods Based on the Barotropic and Two-Parameter Baroclinic Models|journal=[[Journal of the Atmospheric Sciences|Journal of Meteorology]]| date=April 1956 |volume=13|issue=2|pages=127–141 |doi= 10.1175/1520-0469(1956)013<0127:ATONPM>2.0.CO;2 |issn=1520-0469|bibcode = 1956JAtS...13..127T |doi-access=free}}</ref>
+
由热致模式作出的主要假设是,[[热风]]的大小可以改变,但方向不随高度变化,因此大气的斜压性可以用500mb和1000mb的位势高度面和它们之间的平均热风来模拟。<ref>{{cite book|last= Gates|first=W. Lawrence|title=Results Of Numerical Forecasting With The Barotropic And Thermotropic Atmospheric Models|date=August 1955|publisher=Air Force Cambridge Research Laboratories|location=Hanscom Air Force Base|url=http://handle.dtic.mil/100.2/AD101943}}</ref><ref>{{cite journal |last=Thompson|first=P. D.|author2=W. Lawrence Gates|title=A Test of Numerical Prediction Methods Based on the Barotropic and Two-Parameter Baroclinic Models|journal=Journal of the Atmospheric Sciences|Journal of Meteorology| date=April 1956 |volume=13|issue=2|pages=127–141 |doi= 10.1175/1520-0469(1956)013<0127:ATONPM>2.0.CO;2 |issn=1520-0469|bibcode = 1956JAtS...13..127T |doi-access=free}}</ref>
      第23行: 第23行:     
==历史 ==
 
==历史 ==
[[File:Two women operating ENIAC.gif|thumb|280px|The ENIAC main control panel at the [[Moore School of Electrical Engineering]]]]
+
[[File:Two women operating ENIAC.gif|thumb|280px|The ENIAC main control panel at the Moore School of Electrical Engineering]]
   −
数值天气预报的历史起于20世纪20年代,这得益于 Lewis Fry Richardson 使用了 Vihelm Bjerknes 开发的方法的成果。<ref name="Lynch JCP">{{cite journal|last=Lynch|author-link=Peter Lynch (meteorologist)|first=Peter|title=The origins of computer weather prediction and climate modeling|journal=[[Journal of Computational Physics]]|date=2008-03-20|volume=227|issue=7|pages=3431–44|doi= 10.1016/j.jcp.2007.02.034 |url=http://www.rsmas.miami.edu/personal/miskandarani/Courses/MPO662/Lynch,Peter/OriginsCompWF.JCP227.pdf|access-date= 2010-12-23 |bibcode=2008JCoPh.227.3431L|archive-url=https://web.archive.org/web/20100708191309/http://www.rsmas.miami.edu/personal/miskandarani/Courses/MPO662/Lynch,Peter/OriginsCompWF.JCP227.pdf|archive-date=2010-07-08|url-status=dead}}</ref><ref name="Lynch Ch1">{{cite book|last=Lynch |first= Peter |title=The Emergence of Numerical Weather Prediction|year=2006|publisher=[[Cambridge University Press]]|isbn=978-0-521-85729-1|pages=1–27 |chapter= Weather Prediction by Numerical Process}}</ref>直到计算机和计算机模拟时代的到来,计算时间才降低到少于被预测时段。ENIAC 在1950年发明了第一台计算机预测系统,<ref name="Charney 1950">{{cite journal|last1= Charney|first1=Jule|last2=Fjörtoft|first2=Ragnar|last3=von Neumann|first3=John|title=Numerical Integration of the Barotropic Vorticity Equation|journal= Tellus|date=November 1950|volume=2|issue=4|doi=10.3402/tellusa.v2i4.8607|author-link1=Jule Charney|author-link3=John von Neumann|bibcode= 1950TellA...2..237C |pages=237–254|doi-access=free}}</ref><ref>{{cite book|title=Storm Watchers|page=[https://archive.org/details/stormwatcherstur00cox_df1/page/208 208]|year=2002|author=Cox, John D.|publisher=John Wiley & Sons, Inc.|isbn=978-0-471-38108-2|url=https://archive.org/details/stormwatcherstur00cox_df1/page/208}}</ref>之后功能更强大的计算机增加了初始数据集的规模,并包含了更复杂的运动方程的版本。<ref name="Harper BAMS">{{cite journal|last=Harper|first=Kristine|author2=Uccellini, Louis W.|author3= Kalnay, Eugenia|author4= Carey, Kenneth|author5= Morone, Lauren|title=2007: 50th Anniversary of Operational Numerical Weather Prediction|journal=[[Bulletin of the American Meteorological Society]]|date=May 2007|volume=88|issue=5|pages=639–650|doi=10.1175/BAMS-88-5-639 |bibcode=2007BAMS...88..639H |doi-access=free}}</ref>1966年,西德和美国开始根据原始方程模式制作业务预测系统,1972年英国和1977年澳大利亚紧随其后。<ref name="Lynch JCP"/><ref name="Leslie BOM">{{cite journal|last=Leslie|first=L.M.|author2=Dietachmeyer, G.S.|title=Real-time limited area numerical weather prediction in Australia: a historical perspective|journal=Australian Meteorological Magazine|date=December 1992|volume=41|issue=SP|pages=61–77|url=http://www.bom.gov.au/amoj/docs/1992/leslie2.pdf|access-date=2011-01-03|publisher=[[Bureau of Meteorology]]}}</ref> 全球预报模式的发展导致了第一个气候模式的诞生。<ref name="Phillips"/><ref name="Cox210"/>在20世纪70年代和20世纪80年代,有限区域(区域性)模式的发展推动了热带气旋轨道和空气质量预报的进步。<ref name="Shuman W&F">{{cite journal|last=Shuman|first=Frederick G.|author-link=Frederick Gale Shuman|title=History of Numerical Weather Prediction at the National Meteorological Center|journal=[[Weather and Forecasting]]|date=September 1989|volume=4|issue=3|pages=286–296|doi= 10.1175/1520-0434(1989)004<0286:HONWPA>2.0.CO;2 |issn=1520-0434|bibcode=1989WtFor...4..286S|doi-access=free}}</ref><ref name="Steyn, D. G. 1991 241–242">{{cite book|title=Air pollution modeling and its application VIII, Volume 8|author=Steyn, D. G.|publisher=Birkhäuser|year=1991|pages=241–242|isbn= 978-0-306-43828-8}}</ref>
+
数值天气预报的历史起于20世纪20年代,这得益于 Lewis Fry Richardson 使用了 Vihelm Bjerknes 开发的方法的成果。<ref name="Lynch JCP">{{cite journal|last=Lynch|author-link=Peter Lynch (meteorologist)|first=Peter|title=The origins of computer weather prediction and climate modeling|journal=Journal of Computational Physics|date=2008-03-20|volume=227|issue=7|pages=3431–44|doi= 10.1016/j.jcp.2007.02.034 |url=http://www.rsmas.miami.edu/personal/miskandarani/Courses/MPO662/Lynch,Peter/OriginsCompWF.JCP227.pdf|access-date= 2010-12-23 |bibcode=2008JCoPh.227.3431L|archive-url=https://web.archive.org/web/20100708191309/http://www.rsmas.miami.edu/personal/miskandarani/Courses/MPO662/Lynch,Peter/OriginsCompWF.JCP227.pdf|archive-date=2010-07-08|url-status=dead}}</ref><ref name="Lynch Ch1">{{cite book|last=Lynch |first= Peter |title=The Emergence of Numerical Weather Prediction|year=2006|publisher=Cambridge University Press|isbn=978-0-521-85729-1|pages=1–27 |chapter= Weather Prediction by Numerical Process}}</ref>直到计算机和计算机模拟时代的到来,计算时间才降低到少于被预测时段。ENIAC 在1950年发明了第一台计算机预测系统,<ref name="Charney 1950">{{cite journal|last1= Charney|first1=Jule|last2=Fjörtoft|first2=Ragnar|last3=von Neumann|first3=John|title=Numerical Integration of the Barotropic Vorticity Equation|journal= Tellus|date=November 1950|volume=2|issue=4|doi=10.3402/tellusa.v2i4.8607|author-link1=Jule Charney|author-link3=John von Neumann|bibcode= 1950TellA...2..237C |pages=237–254|doi-access=free}}</ref><ref>{{cite book|title=Storm Watchers|page=[https://archive.org/details/stormwatcherstur00cox_df1/page/208 208]|year=2002|author=Cox, John D.|publisher=John Wiley & Sons, Inc.|isbn=978-0-471-38108-2|url=https://archive.org/details/stormwatcherstur00cox_df1/page/208}}</ref>之后功能更强大的计算机增加了初始数据集的规模,并包含了更复杂的运动方程的版本。<ref name="Harper BAMS">{{cite journal|last=Harper|first=Kristine|author2=Uccellini, Louis W.|author3= Kalnay, Eugenia|author4= Carey, Kenneth|author5= Morone, Lauren|title=2007: 50th Anniversary of Operational Numerical Weather Prediction|journal=Bulletin of the American Meteorological Society|date=May 2007|volume=88|issue=5|pages=639–650|doi=10.1175/BAMS-88-5-639 |bibcode=2007BAMS...88..639H |doi-access=free}}</ref>1966年,西德和美国开始根据原始方程模式制作业务预测系统,1972年英国和1977年澳大利亚紧随其后。<ref name="Lynch JCP"/><ref name="Leslie BOM">{{cite journal|last=Leslie|first=L.M.|author2=Dietachmeyer, G.S.|title=Real-time limited area numerical weather prediction in Australia: a historical perspective|journal=Australian Meteorological Magazine|date=December 1992|volume=41|issue=SP|pages=61–77|url=http://www.bom.gov.au/amoj/docs/1992/leslie2.pdf|access-date=2011-01-03|publisher=Bureau of Meteorology}}</ref> 全球预报模式的发展导致了第一个气候模式的诞生。<ref name="Phillips"/><ref name="Cox210"/>在20世纪70年代和20世纪80年代,有限区域(区域性)模式的发展推动了热带气旋轨道和空气质量预报的进步。<ref name="Shuman W&F">{{cite journal|last=Shuman|first=Frederick G.|author-link=Frederick Gale Shuman|title=History of Numerical Weather Prediction at the National Meteorological Center|journal=Weather and Forecasting|date=September 1989|volume=4|issue=3|pages=286–296|doi= 10.1175/1520-0434(1989)004<0286:HONWPA>2.0.CO;2 |issn=1520-0434|bibcode=1989WtFor...4..286S|doi-access=free}}</ref><ref name="Steyn, D. G. 1991 241–242">{{cite book|title=Air pollution modeling and its application VIII, Volume 8|author=Steyn, D. G.|publisher=Birkhäuser|year=1991|pages=241–242|isbn= 978-0-306-43828-8}}</ref>
      −
由于基于大气动力学的预报模式的输出结果需要近地面处的修正,因此20世纪70年代和20世纪80年代开发了单个预报位点的模式输出统计(MOS)。<ref name="MOS" /><ref name="L. Best, D. L. and S. P. Pryor 1983 1–90">{{cite book|title=Air Weather Service Model Output Statistics Systems|author1=L. Best, D. L.  |author2=S. P. Pryor |year=1983|pages=1–90|publisher=Air Force Global Weather Central}}</ref>尽管超级计算机的能力不断提升,数值天气模式的预报仅能延伸到未来两周左右,这是因为观测点的密度和质量以及被用来预测的偏微分方程的混沌本质都会引入每五天加倍的误差。<ref name="Cox">{{cite book|title=Storm Watchers|pages=[https://archive.org/details/stormwatcherstur00cox_df1/page/222 222–224]|year=2002|author=Cox, John D.|publisher=John Wiley & Sons, Inc.|isbn=978-0-471-38108-2|url=https://archive.org/details/stormwatcherstur00cox_df1/page/222}}</ref><ref name="Klaus">Weickmann, Klaus, Jeff Whitaker, Andres Roubicek and Catherine Smith (2001-12-01). [http://www.cdc.noaa.gov/spotlight/12012001/ The Use of Ensemble Forecasts to Produce Improved Medium Range (3–15&nbsp;days) Weather Forecasts.] [[Climate Diagnostics Center]]. Retrieved 2007-02-16.</ref>自20世纪90年代以来,模式集合预报的使用帮助确定了不确定性,并且预测时段比其他可能的方式都要长。<ref name="Toth">{{cite journal|last=Toth|first=Zoltan|author2=Kalnay, Eugenia|title=Ensemble Forecasting at NCEP and the Breeding Method |journal=[[Monthly Weather Review]]|date=December 1997|volume=125|issue=12|pages=3297–3319|doi=10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2|issn=1520-0493|bibcode=1997MWRv..125.3297T|author-link2=Eugenia Kalnay|citeseerx=10.1.1.324.3941}}</ref><ref name="ECens">{{cite web|url=http://ecmwf.int/products/forecasts/guide/The_Ensemble_Prediction_System_EPS_1.html |title=The Ensemble Prediction System (EPS) |publisher=[[ECMWF]] |access-date=2011-01-05 |archive-url=https://web.archive.org/web/20110125125209/http://ecmwf.int/products/forecasts/guide/The_Ensemble_Prediction_System_EPS_1.html |archive-date=25 January 2011 |url-status=dead }}</ref><ref name="RMS">{{cite journal|title=The ECMWF Ensemble Prediction System: Methodology and validation|journal=Quarterly Journal of the Royal Meteorological Society|date=January 1996|volume=122|issue=529|pages=73–119|author1=Molteni, F. |author2=Buizza, R. |author3=Palmer, T.N. |author4=Petroliagis, T. |doi=10.1002/qj.49712252905|bibcode=1996QJRMS.122...73M}}</ref>
+
由于基于大气动力学的预报模式的输出结果需要近地面处的修正,因此20世纪70年代和20世纪80年代开发了单个预报位点的模式输出统计(MOS)。<ref name="MOS" /><ref name="L. Best, D. L. and S. P. Pryor 1983 1–90">{{cite book|title=Air Weather Service Model Output Statistics Systems|author1=L. Best, D. L.  |author2=S. P. Pryor |year=1983|pages=1–90|publisher=Air Force Global Weather Central}}</ref>尽管超级计算机的能力不断提升,数值天气模式的预报仅能延伸到未来两周左右,这是因为观测点的密度和质量以及被用来预测的偏微分方程的混沌本质都会引入每五天加倍的误差。<ref name="Cox">{{cite book|title=Storm Watchers|pages=[https://archive.org/details/stormwatcherstur00cox_df1/page/222 222–224]|year=2002|author=Cox, John D.|publisher=John Wiley & Sons, Inc.|isbn=978-0-471-38108-2|url=https://archive.org/details/stormwatcherstur00cox_df1/page/222}}</ref><ref name="Klaus">Weickmann, Klaus, Jeff Whitaker, Andres Roubicek and Catherine Smith (2001-12-01). [http://www.cdc.noaa.gov/spotlight/12012001/ The Use of Ensemble Forecasts to Produce Improved Medium Range (3–15&nbsp;days) Weather Forecasts.] Climate Diagnostics Center. Retrieved 2007-02-16.</ref>自20世纪90年代以来,模式集合预报的使用帮助确定了不确定性,并且预测时段比其他可能的方式都要长。<ref name="Toth">{{cite journal|last=Toth|first=Zoltan|author2=Kalnay, Eugenia|title=Ensemble Forecasting at NCEP and the Breeding Method |journal=Monthly Weather Review|date=December 1997|volume=125|issue=12|pages=3297–3319|doi=10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2|issn=1520-0493|bibcode=1997MWRv..125.3297T|author-link2=Eugenia Kalnay|citeseerx=10.1.1.324.3941}}</ref><ref name="ECens">{{cite web|url=http://ecmwf.int/products/forecasts/guide/The_Ensemble_Prediction_System_EPS_1.html |title=The Ensemble Prediction System (EPS) |publisher=ECMWF |access-date=2011-01-05 |archive-url=https://web.archive.org/web/20110125125209/http://ecmwf.int/products/forecasts/guide/The_Ensemble_Prediction_System_EPS_1.html |archive-date=25 January 2011 |url-status=dead }}</ref><ref name="RMS">{{cite journal|title=The ECMWF Ensemble Prediction System: Methodology and validation|journal=Quarterly Journal of the Royal Meteorological Society|date=January 1996|volume=122|issue=529|pages=73–119|author1=Molteni, F. |author2=Buizza, R. |author3=Palmer, T.N. |author4=Petroliagis, T. |doi=10.1002/qj.49712252905|bibcode=1996QJRMS.122...73M}}</ref>
    
<br>
 
<br>
第40行: 第40行:     
==计算==
 
==计算==
[[File:NAM 500 MB.PNG|thumb|An example of 500 [[millibar|mbar]] [[geopotential height]] prediction from a numerical weather prediction model.|链接=Special:FilePath/NAM_500_MB.PNG]]
+
[[File:NAM 500 MB.PNG|thumb|An example of 500 millibar geopotential height prediction from a numerical weather prediction model.]]
 
[[File:Supercomputing the Climate.ogv|thumb|超级计算机能够运行高度复杂的模型,从而帮助科学家更好地理解地球的气候。]]
 
[[File:Supercomputing the Climate.ogv|thumb|超级计算机能够运行高度复杂的模型,从而帮助科学家更好地理解地球的气候。]]
   −
模式指的是一种可以在给定的位置和海拔高度生成未来气象信息的一种计算机程序。任何模型中都有一套称为“原始方程组”的方程组,用于预测未来的大气状态。这些方程组依据分析数据初始化,并确定变化速率。这些变化速率可以预测未来一小段时间的大气状态,每一个时间增量被称为一个时间步长。然后这些方程组被用于新的大气状态,得到新的变化速率,新的变化速率接着被用于预测再往后的大气状态。<ref>{{cite book|last=Pielke|first=Roger A.|title=Mesoscale Meteorological Modeling|year=2002|publisher=[[Academic Press]]|isbn=978-0-12-554766-6|pages=48–49}}</ref>不断推进时间步,直到方程组的解到达了想要的预测时间。模式内时间步长的选择与计算网格间距有关,需要确保数值稳定性。<ref>{{cite book|last=Pielke|first=Roger A.|title=Mesoscale Meteorological Modeling|year=2002|publisher=[[Academic Press]]|isbn=978-0-12-554766-6|pages=285–287}}</ref>全球模式的时间步长约为数十分钟,<ref>{{cite book|url=https://books.google.com/books?id=JZikIbXzipwC&pg=PA131|page=132|title=Computational Science – ICCS 2005: 5th International Conference, Atlanta, GA, USA, May 22–25, 2005, Proceedings, Part 1|author=Sunderam, V. S. |author2=G. Dick van Albada |author3=Peter M. A. Sloot |author4=J. J. Dongarra|year=2005|publisher=Springer|isbn=978-3-540-26032-5}}</ref>而区域模式则为1到4分钟。<ref>{{cite book|url=https://books.google.com/books?id=UV6PnF2z5_wC&pg=PA276|page=276|title=Developments in teracomputing: proceedings of the ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology|author=Zwieflhofer, Walter |author2=Norbert Kreitz |author3=European Centre for Medium Range Weather Forecasts|year=2001|publisher=World Scientific|isbn=978-981-02-4761-4}}</ref>全球模式预测时段各有不同。UKMET联合模式可预测未来6天,欧洲中心的中程天气预测模式 European Centre for Medium-Range Weather Forecasts model可预测未来10天,<ref>{{cite book|url=https://books.google.com/books?id=fhW5oDv3EPsC&pg=PA474|page=480|author=Holton, James R.|title=An introduction to dynamic meteorology, Volume 1|year=2004|publisher=Academic Press|isbn=978-0-12-354015-7}}</ref>而环境建模中心 Environmental Modeling Center的全球预测系统模式 Global Forest System model可以预测未来16天。<ref>{{cite book|url=https://books.google.com/books?id=mTZvR3R6YdkC&pg=PA121|page=121|title=Famine early warning systems and remote sensing data|author=Brown, Molly E.|publisher=Springer|year=2008|isbn=978-3-540-75367-4}}</ref>
+
模式指的是一种可以在给定的位置和海拔高度生成未来气象信息的一种计算机程序。任何模型中都有一套称为“原始方程组”的方程组,用于预测未来的大气状态。这些方程组依据分析数据初始化,并确定变化速率。这些变化速率可以预测未来一小段时间的大气状态,每一个时间增量被称为一个时间步长。然后这些方程组被用于新的大气状态,得到新的变化速率,新的变化速率接着被用于预测再往后的大气状态。<ref>{{cite book|last=Pielke|first=Roger A.|title=Mesoscale Meteorological Modeling|year=2002|publisher=Academic Press|isbn=978-0-12-554766-6|pages=48–49}}</ref>不断推进时间步,直到方程组的解到达了想要的预测时间。模式内时间步长的选择与计算网格间距有关,需要确保数值稳定性。<ref>{{cite book|last=Pielke|first=Roger A.|title=Mesoscale Meteorological Modeling|year=2002|publisher=Academic Press|isbn=978-0-12-554766-6|pages=285–287}}</ref>全球模式的时间步长约为数十分钟,<ref>{{cite book|url=https://books.google.com/books?id=JZikIbXzipwC&pg=PA131|page=132|title=Computational Science – ICCS 2005: 5th International Conference, Atlanta, GA, USA, May 22–25, 2005, Proceedings, Part 1|author=Sunderam, V. S. |author2=G. Dick van Albada |author3=Peter M. A. Sloot |author4=J. J. Dongarra|year=2005|publisher=Springer|isbn=978-3-540-26032-5}}</ref>而区域模式则为1到4分钟。<ref>{{cite book|url=https://books.google.com/books?id=UV6PnF2z5_wC&pg=PA276|page=276|title=Developments in teracomputing: proceedings of the ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology|author=Zwieflhofer, Walter |author2=Norbert Kreitz |author3=European Centre for Medium Range Weather Forecasts|year=2001|publisher=World Scientific|isbn=978-981-02-4761-4}}</ref>全球模式预测时段各有不同。UKMET联合模式可预测未来6天,欧洲中心的中程天气预测模式 European Centre for Medium-Range Weather Forecasts model可预测未来10天,<ref>{{cite book|url=https://books.google.com/books?id=fhW5oDv3EPsC&pg=PA474|page=480|author=Holton, James R.|title=An introduction to dynamic meteorology, Volume 1|year=2004|publisher=Academic Press|isbn=978-0-12-354015-7}}</ref>而环境建模中心 Environmental Modeling Center的全球预测系统模式 Global Forest System model可以预测未来16天。<ref>{{cite book|url=https://books.google.com/books?id=mTZvR3R6YdkC&pg=PA121|page=121|title=Famine early warning systems and remote sensing data|author=Brown, Molly E.|publisher=Springer|year=2008|isbn=978-3-540-75367-4}}</ref>
      −
由于使用的方程组是非线性的偏微分方程组,<ref name="finite">{{cite book|url=https://books.google.com/books?id=SH8R_flZBGIC&pg=PA165|title=Finite difference schemes and partial differential equations|author=Strikwerda, John C.|pages=165–170|year=2004|publisher=SIAM|isbn=978-0-89871-567-5}}</ref>除了少数理想情况外无法用解析方法得到准确解,<ref>{{cite book|last=Pielke|first=Roger A.|title=Mesoscale Meteorological Modeling|year=2002|publisher=[[Academic Press]]|isbn=978-0-12-554766-6|pages=65}}</ref>因此使用数值方法来获得近似解。不同的模式使用不同的求解方法:一些全球模式在水平维度使用谱方法求解,在垂直维度使用有限差分方法求解;而另一些全球模式以及区域模式则在三个维度都使用有限差分方法求解。<ref name="finite" />模式的结果可视化通常称为预测图,或简称为“prog”。<ref>{{cite book|author=Ahrens, C. Donald|page=244|isbn=978-0-495-11558-8|year=2008|publisher=Cengage Learning|title=Essentials of meteorology: an invitation to the atmosphere|url=https://books.google.com/books?id=2Yn29IFukbgC&pg=PA244}}</ref>
+
由于使用的方程组是非线性的偏微分方程组,<ref name="finite">{{cite book|url=https://books.google.com/books?id=SH8R_flZBGIC&pg=PA165|title=Finite difference schemes and partial differential equations|author=Strikwerda, John C.|pages=165–170|year=2004|publisher=SIAM|isbn=978-0-89871-567-5}}</ref>除了少数理想情况外无法用解析方法得到准确解,<ref>{{cite book|last=Pielke|first=Roger A.|title=Mesoscale Meteorological Modeling|year=2002|publisher=Academic Press|isbn=978-0-12-554766-6|pages=65}}</ref>因此使用数值方法来获得近似解。不同的模式使用不同的求解方法:一些全球模式在水平维度使用谱方法求解,在垂直维度使用有限差分方法求解;而另一些全球模式以及区域模式则在三个维度都使用有限差分方法求解。<ref name="finite" />模式的结果可视化通常称为预测图,或简称为“prog”。<ref>{{cite book|author=Ahrens, C. Donald|page=244|isbn=978-0-495-11558-8|year=2008|publisher=Cengage Learning|title=Essentials of meteorology: an invitation to the atmosphere|url=https://books.google.com/books?id=2Yn29IFukbgC&pg=PA244}}</ref>
    
<br>
 
<br>
    
== 参数化 ==
 
== 参数化 ==
天气和气象模式网格具有5千米(3.1英里)到300千米(190英里)之间的边界。典型的积云尺度小于1千米(0.62英里),因此需要比这更精细的网格才能被流体运动方程表示。故而,这些云所代表的过程是通过各种复杂的处理来表示的。最早的模式中,如果模式中的空气柱是不稳定的(即底部比顶部热),那么它将被破坏,该垂直柱中的空气将被混合。更加复杂的模式中有增强功能,它们知道整个网格中只有一部分会发生对流、夹带或者一些其它过程。边界在5千米(3.1英里)到25千米(16英里)的气象模式可以明确地表示对流云,尽管它们仍然需要参数化云的微物理过程。<ref>{{cite journal|url=http://ams.confex.com/ams/pdfpapers/126017.pdf|title=3.7 Improving Precipitation Forecasts by the Operational Nonhydrostatic Mesoscale Model with the Kain-Fritsch Convective Parameterization and Cloud Microphysics|author1=Narita, Masami|author2=Shiro Ohmori |date=2007-08-06|access-date=2011-02-15|publisher=[[American Meteorological Society]]|journal=12th Conference on Mesoscale Processes}}</ref>大尺度(层云型)云的形成更加基于物理规律,它们在相对湿度达到某个规定值时形成。此时仍然有亚网格尺寸的过程也需要被考虑进来。层云形成的临界湿度被设定为70%而不是100%,相对湿度超过80%时认为形成的是积云,<ref>{{cite web|url=http://www.atmos.washington.edu/~dargan/591/diag_cloud.tech.pdf |pages=4–5 |title=The Diagnostic Cloud Parameterization Scheme |author=Frierson, Dargan |publisher=[[University of Washington]] |date=2000-09-14 |access-date=2011-02-15 |archive-url=https://web.archive.org/web/20110401013742/http://www.atmos.washington.edu/~dargan/591/diag_cloud.tech.pdf |archive-date=1 April 2011 |url-status=dead }}</ref>这反应了现实世界中可能发生的亚网格尺寸的变化。
+
天气和气象模式网格具有5千米(3.1英里)到300千米(190英里)之间的边界。典型的积云尺度小于1千米(0.62英里),因此需要比这更精细的网格才能被流体运动方程表示。故而,这些云所代表的过程是通过各种复杂的处理来表示的。最早的模式中,如果模式中的空气柱是不稳定的(即底部比顶部热),那么它将被破坏,该垂直柱中的空气将被混合。更加复杂的模式中有增强功能,它们知道整个网格中只有一部分会发生对流、夹带或者一些其它过程。边界在5千米(3.1英里)到25千米(16英里)的气象模式可以明确地表示对流云,尽管它们仍然需要参数化云的微物理过程。<ref>{{cite journal|url=http://ams.confex.com/ams/pdfpapers/126017.pdf|title=3.7 Improving Precipitation Forecasts by the Operational Nonhydrostatic Mesoscale Model with the Kain-Fritsch Convective Parameterization and Cloud Microphysics|author1=Narita, Masami|author2=Shiro Ohmori |date=2007-08-06|access-date=2011-02-15|publisher=American Meteorological Society|journal=12th Conference on Mesoscale Processes}}</ref>大尺度(层云型)云的形成更加基于物理规律,它们在相对湿度达到某个规定值时形成。此时仍然有亚网格尺寸的过程也需要被考虑进来。层云形成的临界湿度被设定为70%而不是100%,相对湿度超过80%时认为形成的是积云,<ref>{{cite web|url=http://www.atmos.washington.edu/~dargan/591/diag_cloud.tech.pdf |pages=4–5 |title=The Diagnostic Cloud Parameterization Scheme |author=Frierson, Dargan |publisher=University of Washington |date=2000-09-14 |access-date=2011-02-15 |archive-url=https://web.archive.org/web/20110401013742/http://www.atmos.washington.edu/~dargan/591/diag_cloud.tech.pdf |archive-date=1 April 2011 |url-status=dead }}</ref>这反应了现实世界中可能发生的亚网格尺寸的变化。
      第59行: 第59行:     
==范围==
 
==范围==
一个模式的水平范围可以是全球性的,覆盖整个地球;也可以是区域性的,只覆盖地球的一部分。区域模式也被称为有限区域模式(LAMs)。区域模式使用更加精细的网格来明确地解决较小尺度的气象现象,因为它们更小的水平范围降低了计算量的要求。区域模式使用一个兼容的全球模式来获得区域模式边界处的初始条件。用以获得区域模式的边界条件的全球模式,以及区域模式本身创造的边界条件,共同引入区域模式的的不确定度和误差。<ref>{{cite book|url=https://books.google.com/books?id=6RQ3dnjE8lgC&pg=PA261|title=Numerical Weather and Climate Prediction|author=Warner, Thomas Tomkins |publisher=[[Cambridge University Press]]|year=2010|isbn=978-0-521-51389-0|page=259}}</ref>
+
一个模式的水平范围可以是全球性的,覆盖整个地球;也可以是区域性的,只覆盖地球的一部分。区域模式也被称为有限区域模式(LAMs)。区域模式使用更加精细的网格来明确地解决较小尺度的气象现象,因为它们更小的水平范围降低了计算量的要求。区域模式使用一个兼容的全球模式来获得区域模式边界处的初始条件。用以获得区域模式的边界条件的全球模式,以及区域模式本身创造的边界条件,共同引入区域模式的的不确定度和误差。<ref>{{cite book|url=https://books.google.com/books?id=6RQ3dnjE8lgC&pg=PA261|title=Numerical Weather and Climate Prediction|author=Warner, Thomas Tomkins |publisher=Cambridge University Press|year=2010|isbn=978-0-521-51389-0|page=259}}</ref>
      −
垂直坐标有多种方式处理。一些模式,如Richardson的1922模式,使用几何高度(z)作为垂直坐标。后来的模式使用压力坐标系代替了几何z坐标系,从而等压面的位势高度变成了因变量,极大地简化了原始方程组。<ref name="Lynch Ch2">{{cite book|last=Lynch|first=Peter|title=The Emergence of Numerical Weather Prediction|year=2006|publisher=[[Cambridge University Press]]|isbn=978-0-521-85729-1|pages=45–46|chapter=The Fundamental Equations}}</ref>  这是因为地球大气层的压力随着高度增加而降低。<ref>{{cite book|author=Ahrens, C. Donald|page=10|isbn=978-0-495-11558-8|year=2008|publisher=Cengage Learning|title=Essentials of meteorology: an invitation to the atmosphere|url=https://books.google.com/books?id=2Yn29IFukbgC&pg=PA244}}</ref>第一个用于业务预报的模式,即单层正压模式,在500mbar水平面上使用一个简单的压力坐标,<ref name="Charney 1950" />并因此基本上是二维的。高分辨率模式(也被称为中尺度模式),如WRF模式,则往往使用标准化压力坐标(sigma坐标)。<ref>{{cite web|last=Janjic |first=Zavisa |title=Scientific Documentation for the NMM Solver |url=http://nldr.library.ucar.edu/collections/technotes/asset-000-000-000-845.pdf |publisher=[[National Center for Atmospheric Research]] |access-date=2011-01-03 |author2=Gall, Robert |author3=Pyle, Matthew E. |pages=12–13 |date=February 2010 |url-status=dead |archive-url=https://web.archive.org/web/20110823082059/http://nldr.library.ucar.edu/collections/technotes/asset-000-000-000-845.pdf |archive-date=2011-08-23 }}</ref>
+
垂直坐标有多种方式处理。一些模式,如Richardson的1922模式,使用几何高度(z)作为垂直坐标。后来的模式使用压力坐标系代替了几何z坐标系,从而等压面的位势高度变成了因变量,极大地简化了原始方程组。<ref name="Lynch Ch2">{{cite book|last=Lynch|first=Peter|title=The Emergence of Numerical Weather Prediction|year=2006|publisher=Cambridge University Press|isbn=978-0-521-85729-1|pages=45–46|chapter=The Fundamental Equations}}</ref>  这是因为地球大气层的压力随着高度增加而降低。<ref>{{cite book|author=Ahrens, C. Donald|page=10|isbn=978-0-495-11558-8|year=2008|publisher=Cengage Learning|title=Essentials of meteorology: an invitation to the atmosphere|url=https://books.google.com/books?id=2Yn29IFukbgC&pg=PA244}}</ref>第一个用于业务预报的模式,即单层正压模式,在500mbar水平面上使用一个简单的压力坐标,<ref name="Charney 1950" />并因此基本上是二维的。高分辨率模式(也被称为中尺度模式),如WRF模式,则往往使用标准化压力坐标(sigma坐标)。<ref>{{cite web|last=Janjic |first=Zavisa |title=Scientific Documentation for the NMM Solver |url=http://nldr.library.ucar.edu/collections/technotes/asset-000-000-000-845.pdf |publisher=National Center for Atmospheric Research|access-date=2011-01-03 |author2=Gall, Robert |author3=Pyle, Matthew E. |pages=12–13 |date=February 2010 |url-status=dead |archive-url=https://web.archive.org/web/20110823082059/http://nldr.library.ucar.edu/collections/technotes/asset-000-000-000-845.pdf |archive-date=2011-08-23 }}</ref>
     
7,129

个编辑

导航菜单