更改

跳到导航 跳到搜索
删除1,368字节 、 2022年3月10日 (四) 11:44
全文审核
第19行: 第19行:  
  is a chemical-like system that usually consists of objects, called molecules, that interact according to rules resembling chemical reaction rules. Artificial chemistries are created and studied in order to understand fundamental properties of chemical systems, including prebiotic evolution, as well as for developing chemical computing systems. Artificial chemistry is a field within computer science wherein chemical reactions—often biochemical ones—are computer-simulated, yielding insights on evolution, self-assembly, and other biochemical phenomena. The field does not use actual chemicals, and should not be confused with either synthetic chemistry or computational chemistry. Rather, bits of information are used to represent the starting molecules, and the end products are examined along with the processes that led to them. The field originated in artificial life but has shown to be a versatile method with applications in many fields such as chemistry, economics, sociology and linguistics.
 
  is a chemical-like system that usually consists of objects, called molecules, that interact according to rules resembling chemical reaction rules. Artificial chemistries are created and studied in order to understand fundamental properties of chemical systems, including prebiotic evolution, as well as for developing chemical computing systems. Artificial chemistry is a field within computer science wherein chemical reactions—often biochemical ones—are computer-simulated, yielding insights on evolution, self-assembly, and other biochemical phenomena. The field does not use actual chemicals, and should not be confused with either synthetic chemistry or computational chemistry. Rather, bits of information are used to represent the starting molecules, and the end products are examined along with the processes that led to them. The field originated in artificial life but has shown to be a versatile method with applications in many fields such as chemistry, economics, sociology and linguistics.
   −
人工化学是一种类化学系统,通常由名为分子的主体组成,它们会根据类似化学反应的规则相互作用。人工化学的创立和研究是为了理解化学系统的基本性质,包括生命起源前的进化,以及开发化学计算系统。人工化学是计算机科学中的一个领域,其中的化学反应——通常是生化反应——是计算机模拟的,产生了关于进化、自组装和其他生化现象的洞见。该领域不使用实际的化学物质,不应与合成化学或计算化学混淆。更确切地说,将以一些信息代表起始分子,并检验反应终产物和产生它们过程。该领域起源于人工生命,但已被证明是一种多用途的方法,在化学、经济学、社会学和语言学等许多领域都有应用。
+
人工化学是一种类化学系统,通常由名为分子的主体组成,它们会根据类似化学反应的规则相互作用。人工化学的创立和研究是为了理解化学系统的基本性质,包括生命起源前的进化,以及开发化学计算系统。人工化学是计算机科学中的一个领域,其中的化学反应——通常是生化反应——是计算机模拟的,产生了关于进化、自组装和其他生化现象的洞见。该领域不使用实际的化学物质,不应与合成化学或计算化学混淆。更确切地说,将比特信息代表起始分子,并检验反应终产物和产生它们过程。该领域起源于人工生命,但已被证明是一种多用途的方法,在化学、经济学、社会学和语言学等许多领域都有应用。
    
==Formal definition==
 
==Formal definition==
第105行: 第105行:     
= = = 重要概念 = =  
 
= = = 重要概念 = =  
* 这个领域严重依赖于数学,包括数学建模。事实上,它更多地依赖于数学背景,而不是化学背景。
+
* 该领域严重依赖于数学,包括数学建模。事实上,它更多地依赖于数学背景,而不是化学背景。
* 组织: 组织是一组封闭的、自我维持的分子。因此,它是一个集合,不创造任何外部本身,这样,任何分子内的集合可以生成内部的集合。
+
* 组织: 组织是一组封闭的、自我维持的分子。因此,它是一个集合,不会创造任何自身之外的存在,这样,集合内的任何分子都被集合内生成。
 
* 闭集  
 
* 闭集  
 
* 自我维持集  
 
* 自我维持集  
* 组织哈斯图
+
* 组织的哈斯图
    
==History of artificial chemistries==
 
==History of artificial chemistries==
第115行: 第115行:  
==History of artificial chemistries==
 
==History of artificial chemistries==
   −
= = 人工化学历史 = =  
+
= = 人工化学的历史 = =  
    
Artificial chemistries emerged as a sub-field of [[artificial life]], in particular from [[strong artificial life]]. The idea behind this field was that if one wanted to build something alive, it had to be done by a combination of non-living entities. For instance, a cell is itself alive, and yet is a combination of non-living molecules. Artificial chemistry enlists, among others, researchers that believe in an extreme bottom-up approach to artificial life. In artificial life, bits of information were used to represent bacteria or members of a species, each of which moved, multiplied, or died in computer simulations. In artificial chemistry  bits of information are used to represent starting molecules capable of reacting with one another. The field has pertained to artificial intelligence by virtue of the fact that, over billions of years, non-living matter evolved into primordial life forms which in turn evolved into intelligent life forms.
 
Artificial chemistries emerged as a sub-field of [[artificial life]], in particular from [[strong artificial life]]. The idea behind this field was that if one wanted to build something alive, it had to be done by a combination of non-living entities. For instance, a cell is itself alive, and yet is a combination of non-living molecules. Artificial chemistry enlists, among others, researchers that believe in an extreme bottom-up approach to artificial life. In artificial life, bits of information were used to represent bacteria or members of a species, each of which moved, multiplied, or died in computer simulations. In artificial chemistry  bits of information are used to represent starting molecules capable of reacting with one another. The field has pertained to artificial intelligence by virtue of the fact that, over billions of years, non-living matter evolved into primordial life forms which in turn evolved into intelligent life forms.
第121行: 第121行:  
Artificial chemistries emerged as a sub-field of artificial life, in particular from strong artificial life. The idea behind this field was that if one wanted to build something alive, it had to be done by a combination of non-living entities. For instance, a cell is itself alive, and yet is a combination of non-living molecules. Artificial chemistry enlists, among others, researchers that believe in an extreme bottom-up approach to artificial life. In artificial life, bits of information were used to represent bacteria or members of a species, each of which moved, multiplied, or died in computer simulations. In artificial chemistry  bits of information are used to represent starting molecules capable of reacting with one another. The field has pertained to artificial intelligence by virtue of the fact that, over billions of years, non-living matter evolved into primordial life forms which in turn evolved into intelligent life forms.
 
Artificial chemistries emerged as a sub-field of artificial life, in particular from strong artificial life. The idea behind this field was that if one wanted to build something alive, it had to be done by a combination of non-living entities. For instance, a cell is itself alive, and yet is a combination of non-living molecules. Artificial chemistry enlists, among others, researchers that believe in an extreme bottom-up approach to artificial life. In artificial life, bits of information were used to represent bacteria or members of a species, each of which moved, multiplied, or died in computer simulations. In artificial chemistry  bits of information are used to represent starting molecules capable of reacting with one another. The field has pertained to artificial intelligence by virtue of the fact that, over billions of years, non-living matter evolved into primordial life forms which in turn evolved into intelligent life forms.
   −
人工化学作为人工生命的一个子领域出现,特别是来自强大的人工生命。这个领域背后的想法是,如果一个人想要建造一个有生命的东西,必须由非生命实体的组合来完成。例如,一个细胞本身是有生命的,但却是非生命分子的组合。人工化学招募了一些研究人员,他们相信人工生命是一种极端的自下而上的方法。在人工生命中,比特信息被用来表示细菌或者物种的成员,在计算机模拟中,每个物种都移动、繁殖或者死亡。在人工化学中,信息片段被用来表示能够彼此反应的起始分子。该领域与人工智能有关,因为数十亿年来,非生命物质进化为原始生命形式,而原始生命形式又进化为智能生命形式。
+
人工化学作为人工生命的子领域而出现,特别是源自强人工生命。这个领域背后的观念是,若想要构建一个有生命的存在,则必须由非生命实体的组合来完成。例如,一个细胞本身是有生命的,但却是非生命分子的组合。此外,人工化学还吸引了另一批研究者,他们相信一种极端的自下而上的人工生命方法。在人工生命中,比特信息被用来表示细菌或物种个体,在计算机模拟中,每个细菌或物种都会移动、繁殖或者死亡。在人工化学中,比特信息被用来表示能彼此反应的起始分子。该领域与人工智能有关,因为数十亿年的演化过程中,非生命物质进化为原始生命形式,而原始生命形式又进化为智能生命形式。
    
==Important contributors==
 
==Important contributors==
第151行: 第151行:  
.P. Speroni di Fenizio. Chemical Organization Theory. PhD thesis, Friedrich Schiller University Jena, 2007.
 
.P. Speroni di Fenizio. Chemical Organization Theory. PhD thesis, Friedrich Schiller University Jena, 2007.
   −
关于人工化学的第一个参考资料来自约翰 · 麦卡斯基尔的一篇技术论文。高分子化学: 突变遗传学的计算模型。技术报告,MPI 生物物理化学,1988。沃尔特 · 丰塔纳和里奥 · 巴斯一起开始了开发炼金术模型 w · 丰塔纳的工作。算法化学。在 c. g. Langton,c. Taylor,j. d. Farmer,和 s. Rasmussen,编辑,Artificial Life II,159-210页。西景出版社,1991。。 w。丰塔纳和 l. Buss。“适者生存”: 走向一种生物组织理论。《数学生物学通报》 ,56(1) : 1-64,1994。这个模型是在第二届国际人工生命会议上提出的。在他的第一篇论文中,他提出了组织的概念,作为一组分子,是代数封闭和自我维持。这个概念由 Dittrich 和 Speroni di Fenizio 进一步发展成为化学组织理论。化学组织理论。《数学生物学通报》(2007)69:1199:1231。.斯佩罗尼 · 迪 · 费尼齐奥。化学组织理论。博士论文,耶拿大学,2007。
+
关于人工化学的第一篇参考文献来自约翰 · 麦卡斯基尔(John McCaskill)的一篇技术论文。沃尔特·丰塔纳(Walter Fontana)与利奥·巴斯(Leo Buss)合作,随后开发了AlChemy模型。该模型发表于第二届国际人工生命大会。在他的第一篇论文中,他提出了组织的概念,即一组代数封闭且自我维持的分子。迪特里奇(Dittrich)和斯佩罗尼·迪·费尼齐奥(Speroni di Fenizio)将这一概念进一步发展为化学组织理论
    
Two main schools of artificial chemistries have been in Japan and Germany.
 
Two main schools of artificial chemistries have been in Japan and Germany.
第185行: 第185行:  
Among other models, Peter Dittrich developed the Seceder model which is able to explain group formation in society through some simple rules. Since then he became a professor in Jena where he investigates artificial chemistries as a way to define a general theory of constructive dynamical systems.
 
Among other models, Peter Dittrich developed the Seceder model which is able to explain group formation in society through some simple rules. Since then he became a professor in Jena where he investigates artificial chemistries as a way to define a general theory of constructive dynamical systems.
   −
人工化学的两个主要流派是日本和德国。在日本,主要的研究人员是池上隆、池上隆和桥本隆。机器和磁带自再生网络中的主动变异。人工生命,2(3) : 305-318,1995。T. Ikegami and T.Hashimoto.机-带协同进化系统中的复制与多样性。在 c. g. Langton 和 k. Shimohara,编辑,Artificial Life v,426-433页。麻省理工出版社,1997。Hideaki Suzuki
+
人工化学的两个主要流派在日本和德国。在日本,主要的研究人员是池上隆(Takashi Ikegami)、铃木英代木(Hideaki Suzuki)和铃木康弘(Yasuhiro Suzuki)。在德国,在德国,沃尔夫冈·班扎夫(Wolfgang Banzhaf)与他的学生彼得·迪特里奇(Peter Dittrich)和延斯·齐格勒(Jens Ziegler)一起开发了各种人工化学模型。他们2001年的论文《人工化学——一篇综述》成为该领域的标准。作为博士论文的一部分,延斯·齐格勒证明了人工化学可以用来控制小型Khepera机器人。在其他模型中,彼得 · 迪特里希发展了离群者模型,该模型能通过一些简单的规则来解释社会中的群体形成。从那时起,他成为耶拿的教授,并在那里研究将人工化学用于定义构造性动力学系统的一般理论。
H.Suzuki.基于串的人工化学的遗传信息保存模型。在 w. Banzhaf,j. Ziegler,t. Christaller,p. Dittrich 和 j. t. Kim,编辑,《人工生命的进展》 ,计算机科学讲义第2801卷,78-88页。斯普林格,2003。H. Suzuki.由中心体信号分裂的分子介质构成的网状细胞。Biosystems, 94(1-2):118–125, 2008.
  −
and Yasuhiro Suzuki
  −
Y. Suzuki, J. Takabayashi, and H. Tanaka.用抽象化学方法研究生态系统中的三营养相互作用。人工生命与机器人,6(3) : 129-132,2002。. y.Suzuki and H. Tanaka.利用多组信号处理建立 p53信号通路模型。在 g. Ciobanu,g. Pa un,和 m. j. Pérez-Jiménez,编辑,膜计算的应用,自然计算系列,203-214页。斯普林格,2006。在德国,沃尔夫冈 · 班扎夫与他的学生彼得 · 迪特里希和延斯 · 齐格勒一起开发了各种人工化学模型。他们2001年的论文《人工化学-回顾》成为该领域的标准。作为博士论文的一部分,Jens Ziegler 证明了人工化学可以用来控制一个小型的 Khepera 机器人。和 W.Banzhaf。机器人新陈代谢的进化控制。7(2) : 171-190,2001.在其他模型中,彼得 · 迪特里希发展了塞克德模型,该模型能够通过一些简单的规则来解释社会中的群体形成。从那时起,他成为耶拿的一名教授,在那里他研究人工化学,作为定义构造性动力系统的一般理论的一种方式。
      
==Applications of artificial chemistries==
 
==Applications of artificial chemistries==
第194行: 第191行:  
==Applications of artificial chemistries==
 
==Applications of artificial chemistries==
   −
= = 人工化学品的应用 = =  
+
= = 人工化学的应用 = =  
    
Artificial Chemistries are often used in the study of protobiology, in trying to bridge the gap between [[chemistry]] and [[biology]].
 
Artificial Chemistries are often used in the study of protobiology, in trying to bridge the gap between [[chemistry]] and [[biology]].
第202行: 第199行:  
A further motivation to study artificial chemistries is the interest in constructive dynamical systems. Yasuhiro Suzuki has modeled various systems such as membrane systems, signaling pathways (P53), ecosystems, and enzyme systems by using his method, abstract rewriting system on multisets (ARMS).
 
A further motivation to study artificial chemistries is the interest in constructive dynamical systems. Yasuhiro Suzuki has modeled various systems such as membrane systems, signaling pathways (P53), ecosystems, and enzyme systems by using his method, abstract rewriting system on multisets (ARMS).
   −
人工化学常用于原生生物学的研究,试图弥合化学和生物学之间的鸿沟。进一步研究人工化学的动机是对构造性动力系统的兴趣。铃木康弘利用他的方法建立了各种系统的模型,如膜系统、信号通路(P53)、生态系统和酶系统,即基于多集的抽象重写系统(ARMS)
+
人工化学常用于原生物学的研究,试图弥合化学和生物学之间的鸿沟。进一步研究人工化学的另一个动机是对构造性动力学系统的兴趣。铃木康弘利用他的方法建立了各种系统的模型,即基于多重集的抽象重写系统(ARMS),如膜系统、信号通路(P53)、生态系统和酶系统。
    
==Artificial chemistry in popular culture==
 
==Artificial chemistry in popular culture==
第214行: 第211行:  
In the 1994 science-fiction novel Permutation City by Greg Egan, brain-scanned emulated humans known as Copies inhabit a simulated world which includes the Autoverse, an artificial life simulator based on a cellular automaton complex enough to represent the substratum of an artificial chemistry. Tiny environments are simulated in the Autoverse and filled with populations of a simple, designed lifeform, Autobacterium lamberti. The purpose of the Autoverse is to allow Copies to explore the life that had evolved there after it had been run on a significantly large segment of the simulated universe (referred to as "Planet Lambert").
 
In the 1994 science-fiction novel Permutation City by Greg Egan, brain-scanned emulated humans known as Copies inhabit a simulated world which includes the Autoverse, an artificial life simulator based on a cellular automaton complex enough to represent the substratum of an artificial chemistry. Tiny environments are simulated in the Autoverse and filled with populations of a simple, designed lifeform, Autobacterium lamberti. The purpose of the Autoverse is to allow Copies to explore the life that had evolved there after it had been run on a significantly large segment of the simulated universe (referred to as "Planet Lambert").
   −
在1994年 Greg Egan 的科幻小说《置换城市》中,大脑扫描模拟人类复制体居住在一个模拟世界中,其中包括自我宇宙,这是一个人工生命模拟器,它基于一个足以代表人工化学基础的细胞自动机。微小的环境是模拟的汽宇宙和充满了一个简单的,设计的生命形式,自身细菌兰伯蒂人口。Autoverse 的目的是让副本探索在模拟宇宙的一个相当大的部分(称为”兰伯特行星”)上运行之后在那里形成的生命。
+
在1994年格雷格·伊根(Greg Egan)的科幻小说《置换城市》(Permutation City)中,大脑扫描的模拟人类复制体居住在一个包含自动宇宙(Autoverse)的模拟世界中。自动宇宙是一个人工生命模拟器,它基于一个复杂到足以将人工化学作为底层的元胞自动机。在自动宇宙中模拟的微环境,充满了一种设计简单的生命形式,即名为朗伯自动菌(''Autobacterium lamberti'')的种群。自动宇宙的目的是让复制品探索在模拟宇宙(称为朗伯行星)上的相当大区域运转之后而演化的生命。
    
==See also==
 
==See also==
第225行: 第222行:  
*Computational chemistry - the use of simplified models to simulate chemical interactions
 
*Computational chemistry - the use of simplified models to simulate chemical interactions
   −
细胞自动机-使用简化模型模拟化学反应的计算化学
+
Avida数字进化
 +
 
 +
元胞自动机
 +
 
 +
计算化学 - 使用简化模型模拟化学相互作用
    
==External links ==
 
==External links ==
第240行: 第241行:  
= = = 外部链接 = =  
 
= = = 外部链接 = =  
 
* 人工化学网站  
 
* 人工化学网站  
* Tim Hutton 的论文与讲座-包括几篇关于人工化学用于人工生命的论文
+
* Tim Hutton 的论文与讲座-包括几篇关于将人工化学用于人工生命的论文
* 美国 protobiology.org 学会网站
+
* protobiology.org 网站
    
==References==
 
==References==
10

个编辑

导航菜单