方程中的第一项表示在每个单位时间内有比例为<math> d_k </math>的粒子从度为<math> k </math>的节点中离开,第二项表示外部粒子从邻居节点扩散到度为<math> k </math>的节点中,该项与节点的连边数<math> k </math>成正比,也就是说一个节点与其邻居节点的连接越多,外部粒子扩散进入该节点的可能性越大。条件概率<math>P(k'|k)</math>表示的是一条边的一端连接度为<math>k</math>的节点时,其另一端指向度为<math>k'</math>的概率。<math>d_{k'k}</math>表示的是两端连接了度为<math>k</math>和<math>k'</math>节点的连边的扩散率。在均匀扩散的最简单情况下,每个粒子从其所在的节点以速率<math>r</math>扩散,因此沿着每条连边的扩散率为<math>d_{k'k}=r/k'</math>。在无关联的网络上,<math>P(k'|k)=k'P(k')/\left<k\right></math>,因此在稳态<math>d\mathcal{N}/dt=0</math>时,很容易得到解(Colizza等,2007b; Noh和Rieger,2004): | 方程中的第一项表示在每个单位时间内有比例为<math> d_k </math>的粒子从度为<math> k </math>的节点中离开,第二项表示外部粒子从邻居节点扩散到度为<math> k </math>的节点中,该项与节点的连边数<math> k </math>成正比,也就是说一个节点与其邻居节点的连接越多,外部粒子扩散进入该节点的可能性越大。条件概率<math>P(k'|k)</math>表示的是一条边的一端连接度为<math>k</math>的节点时,其另一端指向度为<math>k'</math>的概率。<math>d_{k'k}</math>表示的是两端连接了度为<math>k</math>和<math>k'</math>节点的连边的扩散率。在均匀扩散的最简单情况下,每个粒子从其所在的节点以速率<math>r</math>扩散,因此沿着每条连边的扩散率为<math>d_{k'k}=r/k'</math>。在无关联的网络上,<math>P(k'|k)=k'P(k')/\left<k\right></math>,因此在稳态<math>d\mathcal{N}/dt=0</math>时,很容易得到解(Colizza等,2007b; Noh和Rieger,2004): |