第1行: |
第1行: |
− | 此词条暂由[[用户:Bnustv|Bnustv]]整理和审校
| + | 此词条由[[用户:Bnustv|Bnustv]]整理和审校 |
| {{short description|Part of mathematics that addresses the stability of solutions}} | | {{short description|Part of mathematics that addresses the stability of solutions}} |
| | | |
第71行: |
第71行: |
| | | |
| 因此 | | 因此 |
− |
| |
| | | |
| :<math>x_{n+1}-x_{n} = f(x_n)-x_n \simeq f(a) + f'(a)(x_n-a)-x_n = a + f'(a)(x_n-a)-x_n = (f'(a)-1)(x_n-a) \to \frac{x_{n+1}-x_{n}}{x_n-a}=f'(a)-1</math> | | :<math>x_{n+1}-x_{n} = f(x_n)-x_n \simeq f(a) + f'(a)(x_n-a)-x_n = a + f'(a)(x_n-a)-x_n = (f'(a)-1)(x_n-a) \to \frac{x_{n+1}-x_{n}}{x_n-a}=f'(a)-1</math> |
第79行: |
第78行: |
| | | |
| | | |
− | which means that the derivative measures the rate at which the successive iterates approach the fixed point {{Math|''a''}} or diverge from it. If the derivative at {{Math|''a''}} is exactly 1 or −1, then more information is needed in order to decide stability.
| + | 这意味着导数测量的是函数连续迭代接近或偏离不动点 {{Math|''a''}} 的速率。如果不动点 {{Math|''a''}} 处的导数恰好是1或-1,那么就需要更多的信息才能判断系统的稳定性。 |
− | | |
− | which means that the derivative measures the rate at which the successive iterates approach the fixed point or diverge from it. If the derivative at is exactly 1 or −1, then more information is needed in order to decide stability.
| |
− | | |
− | 这意味着导数度量连续迭代接近或远离不动点{{Math|''a''}}的速率。如果不动点处的导数恰好是1或-1,那么需要更多的信息来决定稳定性。
| |
| | | |
| + | 对于具有一个不动点 {{Math|''a''}} 的连续可微映射 {{Math|''f'': '''R'''<sup>''n''</sup> → '''R'''<sup>''n''</sup>}},存在一个类似的判据,由 {{Math|''a''}} 的雅可比矩阵 {{Math|''J''<sub>''a''</sub>(''f'')}} 表示。 |
| | | |
| + | 如果 {{Math|''J''}} 的所有特征值都是绝对值严格小于1的实数或复数,则该点是稳定不动点; |
| | | |
− | There is an analogous criterion for a continuously differentiable map with a fixed point , expressed in terms of its Jacobian matrix at , . If all eigenvalues of are real or complex numbers with absolute value strictly less than 1 then is a stable fixed point; if at least one of them has absolute value strictly greater than 1 then is unstable. Just as for =1, the case of the largest absolute value being 1 needs to be investigated further — the Jacobian matrix test is inconclusive. The same criterion holds more generally for diffeomorphisms of a smooth manifold.
| + | 如果{{Math|''J''}} 的所有特征值中至少有一个的绝对值严格大于1,则它是不稳定的。 |
| | | |
− | 对于具有一个不动点{{Math|''a''}}的连续可微映射{{Math|''f'': '''R'''<sup>''n''</sup> → '''R'''<sup>''n''</sup>}},存在一个类似的判据,由{{Math|''a''}}的雅可比矩阵{{Math|''J''<sub>''a''</sub>(''f'')}}表示。如果{{Math|''J''}}的所有特征值都是绝对值严格小于1的实数或复数,则是稳定不动点; 如果其中至少有一个特征值的绝对值严格大于1,则它是不稳定的。就像对于{{Math|''n''}}=1,最大本征值绝对值为1的情况也需要进一步研究ーー雅可比矩阵检验是不确定的。同样的准则对光滑流形的微分同胚也有更广泛的适用性。
| + | 对于{{Math|''J''}} 的最大特征值的绝对值等于1的情况,需要进一步研究。仅仅使用雅可比矩阵检验是无法确定稳定性类型的。同样的准则对光滑流形的微分同胚情况也有着广泛的适用性。 |
| | | |
| ===Linear autonomous systems 线性自治系统=== | | ===Linear autonomous systems 线性自治系统=== |
第95行: |
第92行: |
| | | |
| | | |
− | The stability of fixed points of a system of constant coefficient linear differential equations of first order can be analyzed using the eigenvalues of the corresponding matrix.
| + | 利用常系数一阶线性微分方程组对应系数矩阵的特征值,可以分析其不动点的稳定性。 |
− | | |
− | 一阶常系数线性微分方程组的不动点的稳定性,可以通过分析相应矩阵的特征值得到。
| |
− | | |
− | | |
| | | |
− | An [[autonomous system (mathematics)|autonomous system]]
| |
| | | |
− | An autonomous system
| + | 对于一个如下的<font color="#ff8000">自治系统 autonomous system</font> |
| | | |
− | 一个<font color="#ff8000">自治系统 autonomous system</font>
| |
| | | |
| | | |
第112行: |
第103行: |
| <math>x' = Ax,</math> | | <math>x' = Ax,</math> |
| | | |
− | 数学 x’ Ax,/ 数学
| |
| | | |
| | | |