第112行: |
第112行: |
| ===Non-linear autonomous systems 非线性自治系统=== | | ===Non-linear autonomous systems 非线性自治系统=== |
| | | |
− | Asymptotic stability of fixed points of a non-linear system can often be established using the [[Hartman–Grobman theorem]].
| |
| | | |
− | Asymptotic stability of fixed points of a non-linear system can often be established using the Hartman–Grobman theorem.
| + | 非线性系统不动点的渐近稳定性通常可以用 Hartman-Grobman 定理来判断。 |
| | | |
− | 非线性系统不动点的渐近稳定性通常可以用 Hartman-Grobman 定理来建立。
| |
| | | |
| | | |
− |
| |
− | Suppose that {{Math|''v''}} is a {{Math|''C''<sup>1</sup>}}-[[vector field]] in {{Math|'''R'''<sup>''n''</sup>}} which vanishes at a point {{Math|''p''}}, {{Math|1=''v''(''p'') = 0}}. Then the corresponding autonomous system
| |
− |
| |
− | Suppose that is a -vector field in which vanishes at a point , . Then the corresponding autonomous system
| |
| | | |
| 假设{{Math|''v''}}是{{Math|'''R'''<sup>''n''</sup>}}上的一个{{Math|''C''<sup>1</sup>}}-向量场,并且下降至某一点{{Math|''p''}}有{{Math|1=''v''(''p'') = 0}}。那么相应的自治系统 | | 假设{{Math|''v''}}是{{Math|'''R'''<sup>''n''</sup>}}上的一个{{Math|''C''<sup>1</sup>}}-向量场,并且下降至某一点{{Math|''p''}}有{{Math|1=''v''(''p'') = 0}}。那么相应的自治系统 |
− |
| |
− |
| |
| :<math>x'=v(x)</math> | | :<math>x'=v(x)</math> |
− |
| |
− |
| |
− |
| |
− |
| |
− | has a constant solution
| |
− |
| |
− | has a constant solution
| |
| | | |
| 有一个常数解 | | 有一个常数解 |
− |
| |
− |
| |
| :<math> x(t)=p.</math> | | :<math> x(t)=p.</math> |
| | | |
| <math> x(t)=p.</math> | | <math> x(t)=p.</math> |
| | | |
− | 数学 x (t) p / 数学
| + | 设{{Math|''J''<sub>''p''</sub>(''v'')}}为向量场 {{Math|''v''}}在点{{Math|''p''}}的{{Math|''n''×''n''}}<font color="#ff8000">雅可比矩阵 Jacobian matrix</font>。如果 {{Math|''J''}} 的所有特征值都具有严格负的实部,则系统的解是渐近稳定的。这个条件可以用劳斯-赫尔维茨判据<font color="#ff8000">Routh–Hurwitz stability criterion</font>来检验。 |
− | | |
− | | |
− | | |
− | Let {{Math|''J''<sub>''p''</sub>(''v'')}} be the {{Math|''n''×''n''}} [[Jacobian matrix and determinant|Jacobian matrix]] of the vector field {{Math|''v''}} at the point {{Math|''p''}}. If all eigenvalues of {{Math|''J''}} have strictly negative real part then the solution is asymptotically stable. This condition can be tested using the [[Routh–Hurwitz stability criterion|Routh–Hurwitz criterion]].
| |
− | | |
− | Let be the Jacobian matrix of the vector field at the point . If all eigenvalues of have strictly negative real part then the solution is asymptotically stable. This condition can be tested using the Routh–Hurwitz criterion.
| |
− | | |
− | 设{{Math|''J''<sub>''p''</sub>(''v'')}}为向量场 {{Math|''v''}}在点{{Math|''p''}}的{{Math|''n''×''n''}}<font color="#ff8000">雅可比矩阵 Jacobian matrix</font>。如果{{Math|''J''}}的所有特征值都是严格负实部,则解是渐近稳定的。这个条件可以用劳斯-赫尔维茨准则来检验。 | |
| | | |
| ==Lyapunov function for general dynamical systems 一般动力系统的李雅普诺夫函数 == | | ==Lyapunov function for general dynamical systems 一般动力系统的李雅普诺夫函数 == |
| | | |
− | {{main|Lyapunov function}}
| |
− |
| |
− |
| |
− |
| |
− | A general way to establish [[Lyapunov stability]] or asymptotic stability of a dynamical system is by means of [[Lyapunov function]]s.
| |
− |
| |
− | A general way to establish Lyapunov stability or asymptotic stability of a dynamical system is by means of Lyapunov functions.
| |
| | | |
− | 建立动力系统的李雅普诺夫稳定性或渐近稳定的一般方法是利用李亚普诺夫函数。
| + | 建立动力系统的李雅普诺夫稳定性或渐近稳定的一般方法即是利用李亚普诺夫函数来分析。 |
| | | |
| ==See also 参见== | | ==See also 参见== |
第187行: |
第155行: |
| {{Reflist}} | | {{Reflist}} |
| | | |
− | *{{Scholarpedia|title=Stability|urlname=Stability|curator=Philip Holmes and Eric T. Shea-Brown}} | + | * |
| | | |
| | | |