更改

跳到导航 跳到搜索
添加194字节 、 2022年3月23日 (三) 22:24
无编辑摘要
第1行: 第1行:    −
'''逆概率加权'''是一种统计技术,用于计算与收集数据的人群不同的伪总体([[pseudo-population]])的标准化统计数据。在应用中,抽样人群和目标推断人群(目标人群)不一致的研究设计是很常见的<ref>Robins, JM; Rotnitzky, A; Zhao, LP (1994). "Estimation of regression coefficients when some regressors are not always observed". Journal of the American Statistical Association. 89 (427): 846–866. doi:10.1080/01621459.1994.10476818.</ref>。可能有一些禁止性因素,如成本、时间或道德方面的考虑,使研究人员无法直接从目标人群中抽样<ref>Breslow, NE; Lumley, T; et al. (2009). "Using the Whole Cohort in the Analysis of Case-Cohort Data". Am J Epidemiol. 169 (11): 1398–1405. doi:10.1093/aje/kwp055. PMC 2768499. PMID 19357328</ref>。解决这个问题的方法是使用另一种设计策略,如分层抽样([[stratified sampling]])。如果应用得当,加权可以潜在地提高效率,减少非加权估计的偏差。
+
'''逆概率加权'''是一种统计技术,用于计算与收集数据的人群不同的伪总体([[pseudo-population]])的标准化统计数据。在应用中,抽样人群和目标推断人群(目标人群)不一致的研究设计是很常见的<ref>Robins, JM; Rotnitzky, A; Zhao, LP (1994). "Estimation of regression coefficients when some regressors are not always observed". Journal of the American Statistical Association. 89 (427): 846–866. doi:10.1080/01621459.1994.10476818.</ref>。可能有一些禁止性因素,如成本、时间或道德方面的考虑,使研究人员无法直接从目标人群中抽样<ref>Breslow, NE; Lumley, T; et al. (2009). "[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768499 Using the Whole Cohort in the Analysis of Case-Cohort Data]". Am J Epidemiol. 169 (11): 1398–1405. [https://doi.org/10.1093%2Faje%2Fkwp055 doi:10.1093/aje/kwp055]. PMC [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768499 2768499]. PMID [https://pubmed.ncbi.nlm.nih.gov/19357328 19357328]</ref>。解决这个问题的方法是使用另一种设计策略,如分层抽样([[stratified sampling]])。如果应用得当,加权可以潜在地提高效率,减少非加权估计的偏差。
    
一个非常早期的加权估计器是均值的Horvitz-Thompson估计器([[Horvitz–Thompson estimator]])<ref>{{cite journal | first1 = D. G. |last1 = Horvitz | first2 = D. J. |last2 = Thompson | title = A generalization of sampling without replacement from a finite universe | journal = [[Journal of the American Statistical Association]] | volume = 47 |  pages = 663–685 | year = 1952 |issue = 260 | doi=10.1080/01621459.1952.10483446}}</ref>。当抽样概率是已知的,抽样人群是从目标人群中抽取的,那么这个概率的倒数被用来加权观测。这种方法已经在不同的框架下被推广到统计学的许多方面。特别是,有加权似然([[likelihood function|weighted likelihoods]])、加权估计方程([[generalized estimating equations|weighted estimating equations]])和加权概率密度([[probability density function|weighted probability densities]]),大多数统计学都是由此而来的。这些应用编纂了其他统计学和估计器的理论,如边际结构模型([[marginal structural models]])、标准化死亡率([[standardized mortality ratio]]),以及用于粗粒度或聚合数据的EM算法([[EM algorithm]])。
 
一个非常早期的加权估计器是均值的Horvitz-Thompson估计器([[Horvitz–Thompson estimator]])<ref>{{cite journal | first1 = D. G. |last1 = Horvitz | first2 = D. J. |last2 = Thompson | title = A generalization of sampling without replacement from a finite universe | journal = [[Journal of the American Statistical Association]] | volume = 47 |  pages = 663–685 | year = 1952 |issue = 260 | doi=10.1080/01621459.1952.10483446}}</ref>。当抽样概率是已知的,抽样人群是从目标人群中抽取的,那么这个概率的倒数被用来加权观测。这种方法已经在不同的框架下被推广到统计学的许多方面。特别是,有加权似然([[likelihood function|weighted likelihoods]])、加权估计方程([[generalized estimating equations|weighted estimating equations]])和加权概率密度([[probability density function|weighted probability densities]]),大多数统计学都是由此而来的。这些应用编纂了其他统计学和估计器的理论,如边际结构模型([[marginal structural models]])、标准化死亡率([[standardized mortality ratio]]),以及用于粗粒度或聚合数据的EM算法([[EM algorithm]])。
49

个编辑

导航菜单