更改

跳到导航 跳到搜索
删除264字节 、 2022年3月24日 (四) 23:45
无编辑摘要
第86行: 第86行:     
<center>[[Image:Entropy-diagram.png|225px|链接=Special:FilePath/Entropy-diagram.png]]</center>
 
<center>[[Image:Entropy-diagram.png|225px|链接=Special:FilePath/Entropy-diagram.png]]</center>
  −
<center>225px</center>
  −
  −
225px / center
        第118行: 第114行:  
<math> S= \frac {Q}{T}</math>
 
<math> S= \frac {Q}{T}</math>
   −
数学 s  frac { q }{ t } / math
        第132行: 第127行:     
<math> \Delta S = S_{\mathit{final}} - S_{\mathit{initial}} \, </math>
 
<math> \Delta S = S_{\mathit{final}} - S_{\mathit{initial}} \, </math>
  −
数学 | Delta s { final }-s { initial } ,/ math
        第148行: 第141行:  
<math> \Delta S = \left(\frac {Q}{T_2} - \frac {Q}{T_1}\right)</math>
 
<math> \Delta S = \left(\frac {Q}{T_2} - \frac {Q}{T_1}\right)</math>
   −
数学 Delta s 左( frac { t2}- frac { t1}右) / 数学
        第162行: 第154行:     
<math> \Delta S = Q\left(\frac {1}{T_2} - \frac {1}{T_1}\right)</math>
 
<math> \Delta S = Q\left(\frac {1}{T_2} - \frac {1}{T_1}\right)</math>
  −
数学 Delta s q 左( frac {1}{ t 2}- frac {1}{ t 1}右) / 数学
        第180行: 第170行:  
An important difference between the past and the future is that in any system (such as a gas of particles) its initial conditions are usually such that its different parts are uncorrelated, but as the system evolves and its different parts interact with each other, they become correlated. For example, whenever dealing with a gas of particles, it is always assumed that its initial conditions are such that there is no correlation between the states of different particles (i.e. the speeds and locations of the different particles are completely random, up to the need to conform with the macrostate of the system). This is closely related to the Second Law of Thermodynamics.
 
An important difference between the past and the future is that in any system (such as a gas of particles) its initial conditions are usually such that its different parts are uncorrelated, but as the system evolves and its different parts interact with each other, they become correlated. For example, whenever dealing with a gas of particles, it is always assumed that its initial conditions are such that there is no correlation between the states of different particles (i.e. the speeds and locations of the different particles are completely random, up to the need to conform with the macrostate of the system). This is closely related to the Second Law of Thermodynamics.
   −
过去和未来的一个重要区别是,在任何系统(例如粒子气体)中,其初始条件通常是其不同部分是不相关的,但随着系统的演化及其不同部分之间的相互作用,它们变得相关。例如,在处理粒子气体时,总是假定其初始条件是不同粒子的状态之间没有相关性(即不同粒子的状态之间没有相关性)。不同粒子的速度和位置是完全随机的,需要符合系统的宏观状态)。这与热力学第二定律密切相关。
+
过去和未来的一个重要区别是,在任何系统(如粒子气体)中,其初始条件通常如此:系统不同部分是不相关的,但随着系统的演化和不同部分相互作用,它们会变得相互关联。例如,每当处理粒子气体时,总是假设其初始条件是这样的,即不同粒子的状态之间没有相关性(即,不同粒子的速度和位置是完全随机的,直到需要符合系统的宏观状态)。这与热力学第二定律密切相关。
     
25

个编辑

导航菜单