更改

跳到导航 跳到搜索
删除527字节 、 2022年3月27日 (日) 17:49
无编辑摘要
第1行: 第1行:  
此词条暂由Bnustv整理和审校,带来阅读不便,请见谅。<br>
 
此词条暂由Bnustv整理和审校,带来阅读不便,请见谅。<br>
{{Cleanup|date=August 2011}}{{Network Science}}
     −
[[File:Hou710 BooleanNetwork.svg|thumb|State space of a Boolean Network with ''N=4'' [[Vertex (graph theory)|nodes]] and ''K=1'' [[Glossary of graph theory#Basics|links]] per node. Nodes can be either switched on (red) or off (blue). Thin (black) arrows symbolise the inputs of the [[Boolean function]] which is a simple "copy"-function for each node. The thick (grey) arrows show what a synchronous update does. Altogether there are 6 (orange) [[attractor]]s, 4 of them are [[Fixed point (mathematics)|fixed points]].|链接=Special:FilePath/Hou710_BooleanNetwork.svg]]
     −
'''<font color="#FF8000">布尔函数Boolean function</font>'''是一种可用于通过逻辑类型的计算来评估与其布尔输入有关的任何布尔输出的函数。这些功能在复杂性理论中起着基本作用。当布尔函数应用于复杂网络中时,我们定义了'''<font color="#FF8000">布尔网络 Boolean Network </font>'''的概念:布尔网络是由一组离散的布尔变量组成,每个变量都被分配了一个布尔函数(可能每个变量都不同),它从这些变量的子集中获取输入,并输出决定其被分配的变量的状态。 这一组函数实际上决定了变量集上的拓扑结构(连通性),这些变量就成为网络中的节点。每个变量的状态都由二进制1(开)和0(关)表示,每个模型都有着对应的逻辑规则表,每个变量的邻接变量可以在逻辑规则表的作用下得到自己的状态。由布尔表达式即可看出各个变量之间的逻辑关系。通常,系统的动态是以离散时间序列的形式进行的,通过评估每个变量在时间 ''t'' 的网络状态上的函数来确定整个网络在时间 ''t+1''的状态,这可能是同步或异步完成的<ref>{{cite journal|last1=Naldi|first1=A.|last2=Monteiro|first2=P. T.|last3=Mussel|first3=C.|last4=Kestler|first4=H. A.|last5=Thieffry|first5=D.|last6=Xenarios|first6=I.|last7=Saez-Rodriguez|first7=J.|last8=Helikar|first8=T.|last9=Chaouiya|first9=C.|title=Cooperative development of logical modelling standards and tools with CoLoMoTo|journal=Bioinformatics|date=25 January 2015|volume=31|issue=7|pages=1154–1159|doi=10.1093/bioinformatics/btv013|pmid=25619997|doi-access=free}}&lt;nowiki&gt;</ref>。
+
 
 +
 
 +
Cleanup|date=August 2011}}{{Network Science}}
 +
 
 +
[[File:Hou710 Bo是一种可用于通过逻辑类型的计算来评估与其布尔输入有关的任何布尔输出的函数。这些功能在复杂性理论中起着基本作用。当布尔函数应用于复杂网络中时,我们定义了lack) arrows symbolise the inputs of the [[Boolean function]] wh的概念:布尔网络是由一组离散的布尔变量组成,每个变量都被分配了一个布尔函数(可能每个变量都不同),它从这些变量的子集中获取输入,并输出决定其被分配的变量的状态。
 +
 
 +
这一组函数实际上决定了变量集上的拓扑结构(连通性),这些变量就成为网络中的节点。每个变量的状态都由二进制1(开)和0(关)表示,每个模型都有着对应的逻辑规则表,每个变量的邻接变量可以在逻辑规则表的作用下得到自己的状态。由布尔表达式即可看出各个变量之间的逻辑关系。通常,系统的动态是以离散时间序列的形式进行的,通过评估每个变量在时间 ''t'' 的网络状态上的函数来确定整个网络在时间 ''t+1''的状态,这可能是同步或异步完成的<ref>{{cite journal|last1=Naldi|first1=A.|last2=Monteiro|first2=P. T.|last3=Mussel|first3=C.|last4=Kestler|first4=H. A.|last5=Thieffry|first5=D.|last6=Xenarios|first6=I.|last7=Saez-Rodriguez|first7=J.|last8=Helikar|first8=T.|last9=Chaouiya|first9=C.|title=Cooperative development of logical modelling standards and tools with CoLoMoTo|journal=Bioinformatics|date=25 January 2015|volume=31|issue=7|pages=1154–1159|doi=10.1093/bioinformatics/btv013|pmid=25619997|doi-access=free}}&lt;nowiki&gt;</ref>。
    
布尔网络在生物学中已被用于模拟'''<font color="#FF8000">调节网络 Regulatory Networks </font>'''。虽然布尔网络是对遗传现实的粗略简化,基因不是简单的二进制开关,但在一些情况下,它们正确地捕捉了表达和抑制基因的正确模式<ref>{{cite journal|last1=Albert|first1=Réka|last2=Othmer|first2=Hans G|title=The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster|journal=Journal of Theoretical Biology|date=July 2003|volume=223|issue=1|pages=1–18|doi=10.1016/S0022-5193(03)00035-3|pmid=12782112|pmc=6388622|citeseerx=10.1.1.13.3370}}<!--|accessdate=25 November 2014--></ref><ref>{{cite journal|last1=Li|first1=J.|last2=Bench|first2=A. J.|last3=Vassiliou|first3=G. S.|last4=Fourouclas|first4=N.|last5=Ferguson-Smith|first5=A. C.|last6=Green|first6=A. R.|title=Imprinting of the human L3MBTL gene, a polycomb family member located in a region of chromosome 20 deleted in human myeloid malignancies |journal=Proceedings of the National Academy of Sciences|date=30 April 2004 |volume=101|issue=19 |pages=7341–7346 |doi=10.1073/pnas.0308195101|pmid=15123827 |pmc=409920|bibcode = 2004PNAS..101.7341L }}</ref>。
 
布尔网络在生物学中已被用于模拟'''<font color="#FF8000">调节网络 Regulatory Networks </font>'''。虽然布尔网络是对遗传现实的粗略简化,基因不是简单的二进制开关,但在一些情况下,它们正确地捕捉了表达和抑制基因的正确模式<ref>{{cite journal|last1=Albert|first1=Réka|last2=Othmer|first2=Hans G|title=The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster|journal=Journal of Theoretical Biology|date=July 2003|volume=223|issue=1|pages=1–18|doi=10.1016/S0022-5193(03)00035-3|pmid=12782112|pmc=6388622|citeseerx=10.1.1.13.3370}}<!--|accessdate=25 November 2014--></ref><ref>{{cite journal|last1=Li|first1=J.|last2=Bench|first2=A. J.|last3=Vassiliou|first3=G. S.|last4=Fourouclas|first4=N.|last5=Ferguson-Smith|first5=A. C.|last6=Green|first6=A. R.|title=Imprinting of the human L3MBTL gene, a polycomb family member located in a region of chromosome 20 deleted in human myeloid malignancies |journal=Proceedings of the National Academy of Sciences|date=30 April 2004 |volume=101|issue=19 |pages=7341–7346 |doi=10.1073/pnas.0308195101|pmid=15123827 |pmc=409920|bibcode = 2004PNAS..101.7341L }}</ref>。
第11行: 第15行:       −
== Classical model==
+
==经典模型==
经典模型<br>
  −
 
   
A Boolean network is a particular kind of [[sequential dynamical system]], where time and states are discrete, i.e. both the set of variables and the set of states in the time series each have a [[bijection]] onto an integer series. Such systems are like [[cellular automata]] on networks, except for the fact that when they are set up each node has a rule that is randomly chosen from all ''2{{sup|2{{sup|K}}}}'' possible ones with ''K'' inputs. With ''K=2'' class 2 behavior tends to dominate. But for ''K>2'', the behavior one sees quickly approaches what is typical for a random mapping in which the network representing the evolution of the ''2{{sup|N}}'' states of the ''N'' underlying nodes is itself connected essentially randomly.<ref>{{cite book|last1=Wolfram|first1=Stephen|title=A New Kind of Science|date=2002|publisher=Wolfram Media, Inc.|location=Champaign, Illinois|isbn=978-1579550080|page=[https://archive.org/details/newkindofscience00wolf/page/936 936]|url=https://archive.org/details/newkindofscience00wolf/page/936|accessdate=15 March 2018|url-access=registration}}</ref>
 
A Boolean network is a particular kind of [[sequential dynamical system]], where time and states are discrete, i.e. both the set of variables and the set of states in the time series each have a [[bijection]] onto an integer series. Such systems are like [[cellular automata]] on networks, except for the fact that when they are set up each node has a rule that is randomly chosen from all ''2{{sup|2{{sup|K}}}}'' possible ones with ''K'' inputs. With ''K=2'' class 2 behavior tends to dominate. But for ''K>2'', the behavior one sees quickly approaches what is typical for a random mapping in which the network representing the evolution of the ''2{{sup|N}}'' states of the ''N'' underlying nodes is itself connected essentially randomly.<ref>{{cite book|last1=Wolfram|first1=Stephen|title=A New Kind of Science|date=2002|publisher=Wolfram Media, Inc.|location=Champaign, Illinois|isbn=978-1579550080|page=[https://archive.org/details/newkindofscience00wolf/page/936 936]|url=https://archive.org/details/newkindofscience00wolf/page/936|accessdate=15 March 2018|url-access=registration}}</ref>
    
<nowiki>A Boolean network is a particular kind of sequential dynamical system, where time and states are discrete, i.e. both the set of variables and the set of states in the time series each have a bijection onto an integer series. Such systems are like cellular automata on networks, except for the fact that when they are set up each node has a rule that is randomly chosen from all 2}} possible ones with K inputs. With K=2 class 2 behavior tends to dominate. But for K>2, the behavior one sees quickly approaches what is typical for a random mapping in which the network representing the evolution of the 2 states of the N underlying nodes is itself connected essentially randomly.</nowiki>
 
<nowiki>A Boolean network is a particular kind of sequential dynamical system, where time and states are discrete, i.e. both the set of variables and the set of states in the time series each have a bijection onto an integer series. Such systems are like cellular automata on networks, except for the fact that when they are set up each node has a rule that is randomly chosen from all 2}} possible ones with K inputs. With K=2 class 2 behavior tends to dominate. But for K>2, the behavior one sees quickly approaches what is typical for a random mapping in which the network representing the evolution of the 2 states of the N underlying nodes is itself connected essentially randomly.</nowiki>
   −
布尔网络是一种特殊的顺序动力学系统,其中时间和状态都是离散的,即时间序列中的变量集和状态集都各自有一个偏射到一个整数序列上。这样的系统就像网络上的细胞自动机一样,只是当它们被建立起来时,每个节点都有一个规则,这个规则是从所有 ''2<sup>k</sup>'' 可能的规则中随机选择的,有 ''K'' 个输入。在 ''K=2'' 时,两类行为往往占主导地位。但对于 ''K>2'' ,人们看到的行为很快就会接近随机映射的典型特征,其中代表 ''N'' 个底层节点的 ''2<sup>k</sup>'' 种状态演化的网络本身基本上是随机连接的。
+
布尔网络是一种有着特殊的顺序动力学的系统,其中时间和状态都是离散的。也就是说,时间序列中的变量集和状态集都各自有一个偏射到一个整数序列上。这样的系统就像网络上的
 +
'''<font color="#FF8000">元胞自动机 cellular automata(CA)</font>'''一样,只是当它们被建立起来的时候,每个节点都遵从着一个规则,这个规则是从所有 ''2<sup>k</sup>'' 个可能的规则中随机选择的,有 ''K'' 个输入。在 ''K=2'' 时,第二类行为往往占主导地位。但对于 ''K>2'' ,人们看到的行为很快就会接近随机映射的典型特征,其中代表 ''N'' 个底层节点的 ''2<sup>k</sup>'' 种状态演化的网络本身基本上是随机连接的。
    
状态转移图的一个重要性质是图中的每个节点都有一条出边,因为布尔网络的下一个状态是由布尔网络的当前状态唯一确定的。从这个属性可以看出,状态转换图是树状结构的集合,每个树状结构由树和循环组成,其中树和/或循环可以由单个节点和一个自循环组成。在这些树状结构中,每条边都是从叶指向根的,循环对应于树的根。
 
状态转移图的一个重要性质是图中的每个节点都有一条出边,因为布尔网络的下一个状态是由布尔网络的当前状态唯一确定的。从这个属性可以看出,状态转换图是树状结构的集合,每个树状结构由树和循环组成,其中树和/或循环可以由单个节点和一个自循环组成。在这些树状结构中,每条边都是从叶指向根的,循环对应于树的根。
第66行: 第69行:  
|-
 
|-
   −
!Author
+
! Author
   −
!Author
+
! Author
    
!作者
 
!作者
第74行: 第77行:  
!Year
 
!Year
   −
!Year
+
! Year
   −
!年份
+
! 年份
   −
! Mean attractor length
+
!Mean attractor length
    
!Mean attractor length
 
!Mean attractor length
   −
!平均吸引长度
+
! 平均吸引长度
    
!Mean attractor number
 
!Mean attractor number
第138行: 第141行:  
|-
 
|-
   −
| Bastolla/ Parisi<ref name="BastollaParisi1998">{{cite journal|last1=Bastolla|first1=U.|last2=Parisi|first2=G.|title=The modular structure of Kauffman networks|journal=Physica D: Nonlinear Phenomena|date=May 1998|volume=115|issue=3–4|pages=219–233|doi=10.1016/S0167-2789(97)00242-X|arxiv = cond-mat/9708214 |bibcode = 1998PhyD..115..219B }}<!--|accessdate=26 November 2014--></ref>
+
|Bastolla/ Parisi<ref name="BastollaParisi1998">{{cite journal|last1=Bastolla|first1=U.|last2=Parisi|first2=G.|title=The modular structure of Kauffman networks|journal=Physica D: Nonlinear Phenomena|date=May 1998|volume=115|issue=3–4|pages=219–233|doi=10.1016/S0167-2789(97)00242-X|arxiv = cond-mat/9708214 |bibcode = 1998PhyD..115..219B }}<!--|accessdate=26 November 2014--></ref>
    
|Bastolla/ Parisi
 
|Bastolla/ Parisi
第160行: 第163行:  
|faster than a power law, <math>\langle\nu\rangle > N^x \forall x</math>
 
|faster than a power law, <math>\langle\nu\rangle > N^x \forall x</math>
   −
|比幂定律快,< math > langle nu rangle > n ^ x for all x <nowiki></math ></nowiki>
+
| 比幂定律快,< math > langle nu rangle > n ^ x for all x <nowiki></math ></nowiki>
    
|first numerical evidences
 
|first numerical evidences
第176行: 第179行:  
|Bilke/ Sjunnesson<ref>{{cite journal|last1=Bilke|first1=Sven|last2=Sjunnesson|first2=Fredrik|title=Stability of the Kauffman model|journal=Physical Review E|date=December 2001|volume=65|issue=1|pages=016129|doi=10.1103/PhysRevE.65.016129|pmid=11800758|arxiv = cond-mat/0107035 |bibcode = 2002PhRvE..65a6129B }}<!--|accessdate=26 November 2014--></ref>
 
|Bilke/ Sjunnesson<ref>{{cite journal|last1=Bilke|first1=Sven|last2=Sjunnesson|first2=Fredrik|title=Stability of the Kauffman model|journal=Physical Review E|date=December 2001|volume=65|issue=1|pages=016129|doi=10.1103/PhysRevE.65.016129|pmid=11800758|arxiv = cond-mat/0107035 |bibcode = 2002PhRvE..65a6129B }}<!--|accessdate=26 November 2014--></ref>
   −
| Bilke/ Sjunnesson
+
|Bilke/ Sjunnesson
   −
|Bilke/Sjunnesson
+
| Bilke/Sjunnesson
    
|2002
 
|2002
   −
|2002
+
| 2002
    
|2002
 
|2002
第248行: 第251行:  
|Samuelsson/Troein<ref>{{cite journal|last1=Samuelsson|first1=Björn|last2=Troein|first2=Carl|title=Superpolynomial Growth in the Number of Attractors in Kauffman Networks|journal=Physical Review Letters|date=March 2003|volume=90|issue=9|doi=10.1103/PhysRevLett.90.098701|bibcode=2003PhRvL..90i8701S|pmid=12689263|page=098701}}<!--|accessdate=26 November 2014--></ref>
 
|Samuelsson/Troein<ref>{{cite journal|last1=Samuelsson|first1=Björn|last2=Troein|first2=Carl|title=Superpolynomial Growth in the Number of Attractors in Kauffman Networks|journal=Physical Review Letters|date=March 2003|volume=90|issue=9|doi=10.1103/PhysRevLett.90.098701|bibcode=2003PhRvL..90i8701S|pmid=12689263|page=098701}}<!--|accessdate=26 November 2014--></ref>
   −
|Samuelsson/Troein
+
| Samuelsson/Troein
    
|Samuelsson/Troein
 
|Samuelsson/Troein
第256行: 第259行:  
|2003
 
|2003
   −
|2003
+
| 2003
    
|
 
|
第292行: 第295行:  
|2005
 
|2005
   −
|2005
+
| 2005
    
|faster than a power law, <math>\langle A\rangle > N^x \forall x</math>
 
|faster than a power law, <math>\langle A\rangle > N^x \forall x</math>
第299行: 第302行:     
|比幂定律快,< math > langle a rangle > n ^ x for all x <nowiki></math ></nowiki>
 
|比幂定律快,< math > langle a rangle > n ^ x for all x <nowiki></math ></nowiki>
 +
 +
| faster than a power law, <math>\langle\nu\rangle > N^x \forall x</math>
    
|faster than a power law, <math>\langle\nu\rangle > N^x \forall x</math>
 
|faster than a power law, <math>\langle\nu\rangle > N^x \forall x</math>
  −
| faster than a power law, <math>\langle\nu\rangle > N^x \forall x</math>
      
|比幂定律快,< math > langle nu rangle > n ^ x for all x <nowiki></math ></nowiki>
 
|比幂定律快,< math > langle nu rangle > n ^ x for all x <nowiki></math ></nowiki>
65

个编辑

导航菜单