第11行: |
第11行: |
| 大气中的遥相关(Teleconnection)是指相距很远的区域之间(一般是相距数千公里区域之间)相互影响和关联的气候异常。南方涛动(ENSO,EI-NINO-Southern Oscillation)是一个典型的遥相关现象。东南太平洋塔希提(148°05′W, 17°53′S)和澳大利亚达尔文(130°59′E,12°20S′)之间存在一种大尺度的气压升降振荡,当塔希提岛海平面气压变高时,达尔文海平面气压变低。达尔文和塔希提两地之间的海平面气压距平值被普遍用以表示南方涛动的特征指数,即SOI. | | 大气中的遥相关(Teleconnection)是指相距很远的区域之间(一般是相距数千公里区域之间)相互影响和关联的气候异常。南方涛动(ENSO,EI-NINO-Southern Oscillation)是一个典型的遥相关现象。东南太平洋塔希提(148°05′W, 17°53′S)和澳大利亚达尔文(130°59′E,12°20S′)之间存在一种大尺度的气压升降振荡,当塔希提岛海平面气压变高时,达尔文海平面气压变低。达尔文和塔希提两地之间的海平面气压距平值被普遍用以表示南方涛动的特征指数,即SOI. |
| | | |
− | == History == | + | == History 历史 == |
− | | |
− | === 历史 ===
| |
| Teleconnections were first noted by the British meteorologist [[Sir Gilbert Walker]] in the late 19th century, through computation of the [[correlation]] between [[time series]] of [[atmospheric pressure]], temperature and rainfall. They served as a building block for the understanding of [[Climate variability and change|climate variability]], by showing that the latter was not purely [[random]]. | | Teleconnections were first noted by the British meteorologist [[Sir Gilbert Walker]] in the late 19th century, through computation of the [[correlation]] between [[time series]] of [[atmospheric pressure]], temperature and rainfall. They served as a building block for the understanding of [[Climate variability and change|climate variability]], by showing that the latter was not purely [[random]]. |
| | | |
第32行: |
第30行: |
| 在1980年代,观测的提升使在整个对流层上更大距离的探测遥相关成为可能。与此同时,理论表明这种模式可以通过因地球的球面几何而产生的罗斯贝波的弥散来理解。这有时被称为“原始模型”。 | | 在1980年代,观测的提升使在整个对流层上更大距离的探测遥相关成为可能。与此同时,理论表明这种模式可以通过因地球的球面几何而产生的罗斯贝波的弥散来理解。这有时被称为“原始模型”。 |
| | | |
− | == Theory == | + | == Theory 理论 == |
| Teleconnections within the tropical Pacific began to be understood thanks to the idealized calculations of A.E. Gill<ref>{{cite journal |doi=10.1002/qj.49710644905 |title=Some simple solutions for heat-induced tropical circulation |year=1980 |last1=Gill |first1=A. E. |journal=Quarterly Journal of the Royal Meteorological Society |volume=106 |issue=449 |pages=447–462|bibcode = 1980QJRMS.106..447G }}</ref> and later through more complex models. | | Teleconnections within the tropical Pacific began to be understood thanks to the idealized calculations of A.E. Gill<ref>{{cite journal |doi=10.1002/qj.49710644905 |title=Some simple solutions for heat-induced tropical circulation |year=1980 |last1=Gill |first1=A. E. |journal=Quarterly Journal of the Royal Meteorological Society |volume=106 |issue=449 |pages=447–462|bibcode = 1980QJRMS.106..447G }}</ref> and later through more complex models. |
| | | |
第59行: |
第57行: |
| 不同于驻波机制,热带海洋与中纬度地区遥相关的另一个机制是沿纬度圈(“纬向”)和两半球之间的对称性。它依赖于瞬时涡动和平均大气流之间相辅相成(非线性)的交互作用。它已经证明可以解释 “厄尔尼诺-南方涛动”在温度和降水的一些遥相关现象。其他作者也提出了许多遥相关模式和当地气候变化因素之间的相关性。 | | 不同于驻波机制,热带海洋与中纬度地区遥相关的另一个机制是沿纬度圈(“纬向”)和两半球之间的对称性。它依赖于瞬时涡动和平均大气流之间相辅相成(非线性)的交互作用。它已经证明可以解释 “厄尔尼诺-南方涛动”在温度和降水的一些遥相关现象。其他作者也提出了许多遥相关模式和当地气候变化因素之间的相关性。 |
| | | |
− | == Applications == | + | == Applications 应用 == |
| Since tropical [[sea surface temperature]]s are predictable up to two years ahead of time,<ref>{{cite journal |doi=10.1038/nature02439 |title=Predictability of El Niño over the past 148 years |year=2004 |last1=Chen |first1=Dake |last2=Cane |first2=Mark A. |last3=Kaplan |first3=Alexey |last4=Zebiak |first4=Stephen E. |last5=Huang |first5=Daji |journal=Nature |volume=428 |issue=6984 |pages=733–6 |pmid=15085127|bibcode = 2004Natur.428..733C }}</ref> knowledge of teleconnection patterns gives some amount of predictability in remote locations with an outlook sometimes as long as a few seasons.<ref>[https://web.archive.org/web/20080110043157/http://portal.iri.columbia.edu/portal/server.pt?open=512&objID=944&PageID=0&cached=true&mode=2&userID=2 IRI Seasonal Climate Forecasts<!-- Bot generated title -->]</ref> | | Since tropical [[sea surface temperature]]s are predictable up to two years ahead of time,<ref>{{cite journal |doi=10.1038/nature02439 |title=Predictability of El Niño over the past 148 years |year=2004 |last1=Chen |first1=Dake |last2=Cane |first2=Mark A. |last3=Kaplan |first3=Alexey |last4=Zebiak |first4=Stephen E. |last5=Huang |first5=Daji |journal=Nature |volume=428 |issue=6984 |pages=733–6 |pmid=15085127|bibcode = 2004Natur.428..733C }}</ref> knowledge of teleconnection patterns gives some amount of predictability in remote locations with an outlook sometimes as long as a few seasons.<ref>[https://web.archive.org/web/20080110043157/http://portal.iri.columbia.edu/portal/server.pt?open=512&objID=944&PageID=0&cached=true&mode=2&userID=2 IRI Seasonal Climate Forecasts<!-- Bot generated title -->]</ref> |
| For instance, predicting [[El Niño]] enables prediction of North American rainfall, snowfall, droughts or temperature patterns with a few weeks to months lead time. In [[Sir Gilbert Walker]]'s time, A strong El Niño usually meant a weaker [[Monsoon#Global_monsoons|Indian monsoon]], but this [[anticorrelation]] has weakened in the 1980s and 1990s, for controversial reasons.{{fact|date=January 2014}} | | For instance, predicting [[El Niño]] enables prediction of North American rainfall, snowfall, droughts or temperature patterns with a few weeks to months lead time. In [[Sir Gilbert Walker]]'s time, A strong El Niño usually meant a weaker [[Monsoon#Global_monsoons|Indian monsoon]], but this [[anticorrelation]] has weakened in the 1980s and 1990s, for controversial reasons.{{fact|date=January 2014}} |