更改

跳到导航 跳到搜索
删除309字节 、 2022年3月30日 (三) 05:53
无编辑摘要
第90行: 第90行:       −
其中<math> V = V_{rest} - V_m </math> 表示负去极化,单位为mV。(???)
+
其中<math> V = V_{rest} - V_m </math> <nowiki><font color = "32CD32">表示负去极化</font></nowiki>,单位为mV。
      −
While in many current software programs,<ref>Nelson ME (2005) [http://nelson.beckman.illinois.edu/courses/physl317/part1/Lec3_HHsection.pdf Electrophysiological Models In: Databasing the Brain: From Data to Knowledge.] (S. Koslow and S. Subramaniam, eds.) Wiley, New York, pp. 285–301</ref>
+
While in many current software programs,<ref>Nelson ME (2005) [http://nelson.beckman.illinois.edu/courses/physl317/part1/Lec3_HHsection.pdf Electrophysiological Models In: Databasing the Brain: From Data to Knowledge.] (S. Koslow and S. Subramaniam, eds.) Wiley, New York, pp. 285–301</ref> Hodgkin–Huxley type models generalize <math> \alpha </math> and <math> \beta </math> to
Hodgkin–Huxley type models generalize <math> \alpha </math> and <math> \beta </math> to
     −
While in many current software programs,Nelson ME (2005) Electrophysiological Models In: Databasing the Brain: From Data to Knowledge. (S. Koslow and S. Subramaniam, eds.) Wiley, New York, pp. 285–301
+
在当前的软件程序中,霍奇金-赫胥黎类模型将<nowiki><math>\alpha</math></nowiki>和<nowiki><math>\beta</math></nowiki>归纳为
Hodgkin–Huxley type models generalize  \alpha and  \beta to
  −
 
  −
虽然在许多当前的软件程序,尼尔森我(2005年)电生理模型在: 数据库的大脑: 从数据到知识。(s. Koslow and s. Subramaniam,eds.)威利,纽约,pp。285-301 Hodgkin-Huxley 型模型将 alpha 和 beta 推广到
      
:<math> \frac{A_p(V_m-B_p)}{\exp\big(\frac{V_m-B_p}{C_p}\big)-D_p} </math>
 
:<math> \frac{A_p(V_m-B_p)}{\exp\big(\frac{V_m-B_p}{C_p}\big)-D_p} </math>
第115行: 第111行:  
Thus, for every value of membrane potential <math>V_{m}</math> the sodium and potassium currents can be described by
 
Thus, for every value of membrane potential <math>V_{m}</math> the sodium and potassium currents can be described by
   −
因此,对于膜电位的每个值<math>V_m</math>,钠电流和钾电流可以描述为(次方的位置???)
+
因此,对于膜电位的每个值<math>V_m</math>,钠电流和钾电流可以描述为
    
: <math>I_\mathrm{Na}(t)=\bar{g}_\mathrm{Na} m(V_m)^3h(V_m)(V_m-E_\mathrm{Na}),</math>
 
: <math>I_\mathrm{Na}(t)=\bar{g}_\mathrm{Na} m(V_m)^3h(V_m)(V_m-E_\mathrm{Na}),</math>
第264行: 第260行:  
[[Category:Ion channels]]
 
[[Category:Ion channels]]
 
[[Category:Computational neuroscience]]
 
[[Category:Computational neuroscience]]
 +
 +
== 编者推荐 ==
 +
《神经科学的数学原理》
     
82

个编辑

导航菜单