更改

跳到导航 跳到搜索
添加113字节 、 2022年3月31日 (四) 12:29
阅读第二遍
第64行: 第64行:  
The above is merely a sketch of a quantum Turing machine, rather than its formal definition, as it leaves vague several important details: for example, how often a [[quantum measurement|measurement]] is performed; see for example, the difference between a measure-once and a measure-many QFA.  This question of measurement affects the way in which writes to the output tape are defined.
 
The above is merely a sketch of a quantum Turing machine, rather than its formal definition, as it leaves vague several important details: for example, how often a [[quantum measurement|measurement]] is performed; see for example, the difference between a measure-once and a measure-many QFA.  This question of measurement affects the way in which writes to the output tape are defined.
   −
以上只是一个量子图灵机的草图,而不是它的正式定义,因为它的一些重要细节仍然定义模糊:例如,我们以什么样的频率执行对于状态的观测;什么是一次观测量子有限自动机和多次观测量子有限自动机 QFA 之间的区别。这些观测问题会影响我们如何定义写入和输出纸带的方式。
+
以上只是一个量子图灵机的草图,而不是它的正式定义,因为它的一些重要细节仍然定义模糊:例如,我们以什么样的频率执行对于状态的观测;什么是一次观测量子有限自动机measure-once  [[quantum finite automaton]]和多次观测量子有限自动机 measure-many [[quantum finite automaton]] 之间的区别。这些观测问题会影响我们如何定义写入和输出纸带的方式。
    
==历史==
 
==历史==
第70行: 第70行:  
In 1980 and 1982, physicist [[Paul Benioff]] published papers<ref name=":0">{{cite journal |last1=Benioff | first1=Paul | title=The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines | journal=Journal of Statistical Physics |volume=22 | issue=5 | pages=563–591 | year=1980 | doi=10.1007/bf01011339|bibcode=1980JSP....22..563B }}</ref><ref name=":1">{{Cite journal | doi=10.1007/BF01342185 | last1=Benioff | first1=P. | title=Quantum mechanical hamiltonian models of turing machines | journal=Journal of Statistical Physics | volume=29 | issue=3 | pages=515–546 | year=1982|bibcode=1982JSP....29..515B }}</ref> that first described a quantum mechanical model of [[Turing machines]]. A 1985 article written by Oxford University physicist [[David Deutsch]] further developed the idea of quantum computers by suggesting [[quantum gate]]s could function in a similar fashion to traditional digital computing [[Binary numeral system|binary]] [[logic gates]].<ref name="Deutsch1985">{{cite journal|last=Deutsch|first=David|author-link=David Deutsch|date=July 1985|title=Quantum theory, the Church-Turing principle and the universal quantum computer|url=http://www.ceid.upatras.gr/tech_news/papers/quantum_theory.pdf|url-status=dead|journal=[[Proceedings of the Royal Society A]]|volume=400|issue=1818|pages=97–117|bibcode=1985RSPSA.400...97D|doi=10.1098/rspa.1985.0070|archiveurl=https://web.archive.org/web/20081123183419/http://www.ceid.upatras.gr/tech_news/papers/quantum_theory.pdf|archivedate=2008-11-23|citeseerx=10.1.1.41.2382}}</ref>
 
In 1980 and 1982, physicist [[Paul Benioff]] published papers<ref name=":0">{{cite journal |last1=Benioff | first1=Paul | title=The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines | journal=Journal of Statistical Physics |volume=22 | issue=5 | pages=563–591 | year=1980 | doi=10.1007/bf01011339|bibcode=1980JSP....22..563B }}</ref><ref name=":1">{{Cite journal | doi=10.1007/BF01342185 | last1=Benioff | first1=P. | title=Quantum mechanical hamiltonian models of turing machines | journal=Journal of Statistical Physics | volume=29 | issue=3 | pages=515–546 | year=1982|bibcode=1982JSP....29..515B }}</ref> that first described a quantum mechanical model of [[Turing machines]]. A 1985 article written by Oxford University physicist [[David Deutsch]] further developed the idea of quantum computers by suggesting [[quantum gate]]s could function in a similar fashion to traditional digital computing [[Binary numeral system|binary]] [[logic gates]].<ref name="Deutsch1985">{{cite journal|last=Deutsch|first=David|author-link=David Deutsch|date=July 1985|title=Quantum theory, the Church-Turing principle and the universal quantum computer|url=http://www.ceid.upatras.gr/tech_news/papers/quantum_theory.pdf|url-status=dead|journal=[[Proceedings of the Royal Society A]]|volume=400|issue=1818|pages=97–117|bibcode=1985RSPSA.400...97D|doi=10.1098/rspa.1985.0070|archiveurl=https://web.archive.org/web/20081123183419/http://www.ceid.upatras.gr/tech_news/papers/quantum_theory.pdf|archivedate=2008-11-23|citeseerx=10.1.1.41.2382}}</ref>
   −
物理学家 Paul Benioff 在1980 年和 1982 年发表的论文中,首次描述了图灵机的量子力学模型。<ref name=":0" /><ref name=":1" /> 牛津大学物理学家 David Deutsch 在 1985 年撰写的一篇文章中进一步发展了量子计算机的概念,他提议量子门[[quantum gate]]应该以类似于传统数字计算二进制逻辑门的方式运行。<ref name="Deutsch1985" />
+
物理学家 Paul Benioff 在1980 年和 1982 年发表的论文中,首次描述了图灵机的量子力学模型。<ref name=":0" /><ref name=":1" /> 牛津大学物理学家 David Deutsch 在 1985 年撰写的一篇文章中进一步推广了量子计算机的概念,他提议量子门[[quantum gate]]应该以类似于传统数字计算二进制逻辑门的方式运行。<ref name="Deutsch1985" />
       
Iriyama, [[Masanori Ohya|Ohya]], and Volovich have developed a model of a ''linear quantum Turing machine'' (LQTM).  This is a generalization of a classical QTM that has mixed states and that allows irreversible transition functions.  These allow the representation of quantum measurements without classical outcomes.<ref name=":2">{{cite journal|title=Classically-Controlled Quantum Computation|date=2007-04-04|pages=601–620|author1=Simon Perdrix|author2=Philippe Jorrand|volume=16|journal=Math. Struct. In Comp. Science|arxiv=quant-ph/0407008|doi=10.1017/S096012950600538X|issue=4}} also {{cite journal|title=Classically-Controlled Quantum Computation|author=Simon Perdrix and Philippe Jorrand|url=http://dcm-workshop.org.uk./2005/dcm-draft-proceedings.pdf|year=2006|pages=601–620|journal=Math. Struct. In Comp. Science|volume=16|doi=10.1017/S096012950600538X|issue=4|citeseerx=10.1.1.252.1823}}</ref>
 
Iriyama, [[Masanori Ohya|Ohya]], and Volovich have developed a model of a ''linear quantum Turing machine'' (LQTM).  This is a generalization of a classical QTM that has mixed states and that allows irreversible transition functions.  These allow the representation of quantum measurements without classical outcomes.<ref name=":2">{{cite journal|title=Classically-Controlled Quantum Computation|date=2007-04-04|pages=601–620|author1=Simon Perdrix|author2=Philippe Jorrand|volume=16|journal=Math. Struct. In Comp. Science|arxiv=quant-ph/0407008|doi=10.1017/S096012950600538X|issue=4}} also {{cite journal|title=Classically-Controlled Quantum Computation|author=Simon Perdrix and Philippe Jorrand|url=http://dcm-workshop.org.uk./2005/dcm-draft-proceedings.pdf|year=2006|pages=601–620|journal=Math. Struct. In Comp. Science|volume=16|doi=10.1017/S096012950600538X|issue=4|citeseerx=10.1.1.252.1823}}</ref>
   −
Iriyama、Ohya 和 Volovich 开发了线性量子图灵机 (LQTM) 模型。他们对具有混合状态并允许不可逆转换函数的量子图灵机进行了延伸。允许了没有经典结果的情况对量子测量在。<ref name=":2" />
+
Iriyama、Ohya 和 Volovich 开发了线性量子图灵机 linear quantum Turing machine (LQTM) 模型。他们对具有混合状态并允许不可逆转换函数的量子图灵机进行了延伸。允许了在没有经典结果的情况下对量子的测量。<ref name=":2" />
    
A ''quantum Turing machine with [[postselection]]'' was defined by [[Scott Aaronson]], who showed that the class of polynomial time on such a machine ([[PostBQP]]) is equal to the classical complexity class [[PP (complexity)|PP]].<ref name=":3">{{cite journal|last=Aaronson|first=Scott|year=2005|title=Quantum computing, postselection, and probabilistic polynomial-time|journal=[[Proceedings of the Royal Society A]]|volume=461|issue=2063|pages=3473–3482|doi=10.1098/rspa.2005.1546|bibcode = 2005RSPSA.461.3473A |arxiv=quant-ph/0412187}}  Preprint available at [https://arxiv.org/abs/quant-ph/0412187]</ref>
 
A ''quantum Turing machine with [[postselection]]'' was defined by [[Scott Aaronson]], who showed that the class of polynomial time on such a machine ([[PostBQP]]) is equal to the classical complexity class [[PP (complexity)|PP]].<ref name=":3">{{cite journal|last=Aaronson|first=Scott|year=2005|title=Quantum computing, postselection, and probabilistic polynomial-time|journal=[[Proceedings of the Royal Society A]]|volume=461|issue=2063|pages=3473–3482|doi=10.1098/rspa.2005.1546|bibcode = 2005RSPSA.461.3473A |arxiv=quant-ph/0412187}}  Preprint available at [https://arxiv.org/abs/quant-ph/0412187]</ref>
    
Scott Aaronson 定义了具有后选择功能的量子图灵机,他证明了这种机器上的时间复杂度类 (PostBQP) 等于经典复杂度 PP。<ref name=":3" />
 
Scott Aaronson 定义了具有后选择功能的量子图灵机,他证明了这种机器上的时间复杂度类 (PostBQP) 等于经典复杂度 PP。<ref name=":3" />
  −
  −
      
== 相关内容 ==
 
== 相关内容 ==
58

个编辑

导航菜单