更改

跳到导航 跳到搜索
添加291字节 、 2022年4月4日 (一) 15:43
无编辑摘要
第7行: 第7行:  
Large-scale brain networks (also known as intrinsic brain networks) are collections of widespread brain regions showing functional connectivity by statistical analysis of the fMRI BOLD signal or other recording methods such as EEG, PET and MEG. An emerging paradigm in neuroscience is that cognitive tasks are performed not by individual brain regions working in isolation but by networks consisting of several discrete brain regions that are said to be "functionally connected". Functional connectivity networks may be found using algorithms such as cluster analysis, spatial independent component analysis (ICA), seed based, and others. Synchronized brain regions may also be identified using long-range synchronization of the EEG, MEG, or other dynamic brain signals.
 
Large-scale brain networks (also known as intrinsic brain networks) are collections of widespread brain regions showing functional connectivity by statistical analysis of the fMRI BOLD signal or other recording methods such as EEG, PET and MEG. An emerging paradigm in neuroscience is that cognitive tasks are performed not by individual brain regions working in isolation but by networks consisting of several discrete brain regions that are said to be "functionally connected". Functional connectivity networks may be found using algorithms such as cluster analysis, spatial independent component analysis (ICA), seed based, and others. Synchronized brain regions may also be identified using long-range synchronization of the EEG, MEG, or other dynamic brain signals.
   −
'''<font color="#ff8000">大规模脑网络Large-scale brain networks</font>'''(也称为'''<font color="#ff8000">内在大脑网络intrinsic brain networks</font>''')是在对'''<font color="#ff8000">基于血氧水平依赖效应的功能性磁共振成像信号fMRI BOLD signal</font>'''的统计分析或其他记录方法(如脑电图EEG、正电子发射断层扫描技术PET和脑磁图MEG)中,表现出功能连接的脑区的集合。根据神经科学中一个新出现的范式,认知任务不是由单个脑区独立执行的,而是由几个互不相连的脑区“功能连接”组成的网络执行的。功能连接网络可以通过数据聚类Cluster analysis、空间独立元素分析Spatial ICA、种子点方法seed-based等算法来发现。同步的脑区也可以用脑电图、脑磁图或其他动态脑信号的远程同步来识别。
+
'''<font color="#ff8000">大规模脑网络Large-scale brain networks</font>'''(也称为'''<font color="#ff8000">内在大脑网络Intrinsic brain networks</font>''')是在对基于'''<font color="#ff8000">血氧水平依赖效应BOLD</font>'''的'''<font color="#ff8000">功能性磁共振成像fMRI</font>'''信号的统计分析或其他记录方法(如'''<font color="#ff8000">脑电图EEG</font>'''、'''<font color="#ff8000">正电子发射断层扫描技术PET</font>'''和'''<font color="#ff8000">脑磁图MEG</font>''')中,表现出'''<font color="#ff8000">功能连接Functional connectivity</font>'''的'''<font color="#ff8000">脑区Brain regions</font>'''的集合。根据神经科学中一个新出现的范式,认知任务不是由单个脑区独立执行的,而是由几个互不相连的脑区“功能连接”组成的网络执行的。功能连接网络可以通过'''<font color="#ff8000">数据聚类Cluster analysis</font>'''、空间'''<font color="#ff8000">独立元素分析ICA</font>'''、种子点方法等算法来发现。同步的脑区也可以用脑电图、脑磁图或其他动态脑信号的远程同步来识别。
    
The set of identified brain areas that are linked together in a large-scale network varies with cognitive function.<ref name="Bressler2">{{cite journal|last1=Bressler|first1=Steven L.|title=Neurocognitive networks|journal=Scholarpedia|volume=3|issue=2|pages=1567|doi=10.4249/scholarpedia.1567|year=2008|bibcode=2008SchpJ...3.1567B|doi-access=free}}</ref> When the cognitive state is not explicit (i.e., the subject is at "rest"), the large-scale brain network is a [[Resting state fMRI|resting state]] network (RSN). As a physical system with graph-like properties,<ref name="Bressler" /> a large-scale brain network has both nodes and edges and cannot be identified simply by the co-activation of brain areas. In recent decades, the analysis of brain networks was made feasible by advances in imaging techniques as well as new tools from [[graph theory]] and [[Dynamical systems theory|dynamical systems]].
 
The set of identified brain areas that are linked together in a large-scale network varies with cognitive function.<ref name="Bressler2">{{cite journal|last1=Bressler|first1=Steven L.|title=Neurocognitive networks|journal=Scholarpedia|volume=3|issue=2|pages=1567|doi=10.4249/scholarpedia.1567|year=2008|bibcode=2008SchpJ...3.1567B|doi-access=free}}</ref> When the cognitive state is not explicit (i.e., the subject is at "rest"), the large-scale brain network is a [[Resting state fMRI|resting state]] network (RSN). As a physical system with graph-like properties,<ref name="Bressler" /> a large-scale brain network has both nodes and edges and cannot be identified simply by the co-activation of brain areas. In recent decades, the analysis of brain networks was made feasible by advances in imaging techniques as well as new tools from [[graph theory]] and [[Dynamical systems theory|dynamical systems]].
第27行: 第27行:  
各种网络活动的中断牵连到神经精神疾病,如抑郁症、老年痴呆症、自闭症光谱、精神分裂症、多动症和躁郁症。
 
各种网络活动的中断牵连到神经精神疾病,如抑郁症、老年痴呆症、自闭症光谱、精神分裂症、多动症和躁郁症。
   −
==Core networks==
+
==Core networks ==
 
[[File:Heine2012x3010.png|thumb|An example that identified 10 large-scale brain networks from [[resting state fMRI]] activity through [[independent component analysis]].<ref name="Heine" />|链接=Special:FilePath/Heine2012x3010.png]]
 
[[File:Heine2012x3010.png|thumb|An example that identified 10 large-scale brain networks from [[resting state fMRI]] activity through [[independent component analysis]].<ref name="Heine" />|链接=Special:FilePath/Heine2012x3010.png]]
 
Because brain networks can be identified at various different resolutions and with various different neurobiological properties, there is no such thing as a universal atlas of brain networks that fits all circumstances.<ref>{{cite journal|last1=Eickhoff|first1=SB|last2=Yeo|first2=BTT|last3=Genon|first3=S|title=Imaging-based parcellations of the human brain.|journal=Nature Reviews. Neuroscience|date=November 2018|volume=19|issue=11|pages=672–686|doi=10.1038/s41583-018-0071-7|pmid=30305712|s2cid=52954265|url=http://juser.fz-juelich.de/record/856633/files/Eickhoff_Yeo_Genon_NRN_MainManuscriptInclFigures.pdf}}</ref> While acknowledging this problem, Uddin, Yeo, and Spreng proposed in 2019<ref name="Uddin2019">{{cite journal|last1=Uddin|first1=LQ|last2=Yeo|first2=BTT|last3=Spreng|first3=RN|title=Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks.|journal=Brain Topography|date=November 2019|volume=32|issue=6|pages=926–942|doi=10.1007/s10548-019-00744-6|pmid=31707621|pmc=7325607}}</ref> that the following six networks should be defined as core networks based on converging evidences from multiple studies<ref>{{cite journal|last1=Doucet|first1=GE|last2=Lee|first2=WH|last3=Frangou|first3=S|title=Evaluation of the spatial variability in the major resting-state networks across human brain functional atlases.|journal=Human Brain Mapping|date=2019-10-15|volume=40|issue=15|pages=4577–4587|doi=10.1002/hbm.24722|pmid=31322303|pmc=6771873}}</ref><ref name="Yeo" /><ref>{{cite journal|last1=Smith|first1=SM|last2=Fox|first2=PT|last3=Miller|first3=KL|last4=Glahn|first4=DC|last5=Fox|first5=PM|last6=Mackay|first6=CE|last7=Filippini|first7=N|last8=Watkins|first8=KE|last9=Toro|first9=R|last10=Laird|first10=AR|last11=Beckmann|first11=CF|title=Correspondence of the brain's functional architecture during activation and rest.|journal=Proceedings of the National Academy of Sciences of the United States of America|date=2009-08-04|volume=106|issue=31|pages=13040–5|doi=10.1073/pnas.0905267106|pmid=19620724|pmc=2722273|bibcode=2009PNAS..10613040S|doi-access=free}}</ref> to facilitate communication between researchers.
 
Because brain networks can be identified at various different resolutions and with various different neurobiological properties, there is no such thing as a universal atlas of brain networks that fits all circumstances.<ref>{{cite journal|last1=Eickhoff|first1=SB|last2=Yeo|first2=BTT|last3=Genon|first3=S|title=Imaging-based parcellations of the human brain.|journal=Nature Reviews. Neuroscience|date=November 2018|volume=19|issue=11|pages=672–686|doi=10.1038/s41583-018-0071-7|pmid=30305712|s2cid=52954265|url=http://juser.fz-juelich.de/record/856633/files/Eickhoff_Yeo_Genon_NRN_MainManuscriptInclFigures.pdf}}</ref> While acknowledging this problem, Uddin, Yeo, and Spreng proposed in 2019<ref name="Uddin2019">{{cite journal|last1=Uddin|first1=LQ|last2=Yeo|first2=BTT|last3=Spreng|first3=RN|title=Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks.|journal=Brain Topography|date=November 2019|volume=32|issue=6|pages=926–942|doi=10.1007/s10548-019-00744-6|pmid=31707621|pmc=7325607}}</ref> that the following six networks should be defined as core networks based on converging evidences from multiple studies<ref>{{cite journal|last1=Doucet|first1=GE|last2=Lee|first2=WH|last3=Frangou|first3=S|title=Evaluation of the spatial variability in the major resting-state networks across human brain functional atlases.|journal=Human Brain Mapping|date=2019-10-15|volume=40|issue=15|pages=4577–4587|doi=10.1002/hbm.24722|pmid=31322303|pmc=6771873}}</ref><ref name="Yeo" /><ref>{{cite journal|last1=Smith|first1=SM|last2=Fox|first2=PT|last3=Miller|first3=KL|last4=Glahn|first4=DC|last5=Fox|first5=PM|last6=Mackay|first6=CE|last7=Filippini|first7=N|last8=Watkins|first8=KE|last9=Toro|first9=R|last10=Laird|first10=AR|last11=Beckmann|first11=CF|title=Correspondence of the brain's functional architecture during activation and rest.|journal=Proceedings of the National Academy of Sciences of the United States of America|date=2009-08-04|volume=106|issue=31|pages=13040–5|doi=10.1073/pnas.0905267106|pmid=19620724|pmc=2722273|bibcode=2009PNAS..10613040S|doi-access=free}}</ref> to facilitate communication between researchers.
第36行: 第36行:  
因为大脑网络可以用不同的分辨率和不同的神经生物学特性来识别,所以没有适合所有情况的通用大脑网络图谱。在承认这个问题的同时,Uddin,Yeo,和 Spreng 在2019年提出,以下六个网络应该被定义为核心网络,基于来自多个研究的聚合证据,以促进研究人员之间的交流。
 
因为大脑网络可以用不同的分辨率和不同的神经生物学特性来识别,所以没有适合所有情况的通用大脑网络图谱。在承认这个问题的同时,Uddin,Yeo,和 Spreng 在2019年提出,以下六个网络应该被定义为核心网络,基于来自多个研究的聚合证据,以促进研究人员之间的交流。
   −
=== Default Mode (Medial frontoparietal)===
+
===Default Mode (Medial frontoparietal)===
 
{{Main|Default mode network}}
 
{{Main|Default mode network}}
 
*The default mode network is active when an individual is awake and at rest. It preferentially activates when individuals focus on internally-oriented tasks such as daydreaming, envisioning the future, retrieving memories, and [[theory of mind]]. It is negatively correlated with brain systems that focus on external visual signals. It is the most widely researched network.<ref name="Bressler" /><ref name="Bassett" /><ref>{{Cite journal|date=2012-08-15|title=The serendipitous discovery of the brain's default network|journal=NeuroImage|language=en|volume=62|issue=2|pages=1137–1145|doi=10.1016/j.neuroimage.2011.10.035|pmid=22037421|issn=1053-8119|last1=Buckner|first1=Randy L.|s2cid=9880586}}</ref><ref name="Riedl" /><ref name="Yuan">
 
*The default mode network is active when an individual is awake and at rest. It preferentially activates when individuals focus on internally-oriented tasks such as daydreaming, envisioning the future, retrieving memories, and [[theory of mind]]. It is negatively correlated with brain systems that focus on external visual signals. It is the most widely researched network.<ref name="Bressler" /><ref name="Bassett" /><ref>{{Cite journal|date=2012-08-15|title=The serendipitous discovery of the brain's default network|journal=NeuroImage|language=en|volume=62|issue=2|pages=1137–1145|doi=10.1016/j.neuroimage.2011.10.035|pmid=22037421|issn=1053-8119|last1=Buckner|first1=Randy L.|s2cid=9880586}}</ref><ref name="Riedl" /><ref name="Yuan">
第62行: 第62行:  
===Attention (Dorsal frontoparietal)===
 
===Attention (Dorsal frontoparietal)===
 
{{Main|Dorsal attention network}}
 
{{Main|Dorsal attention network}}
* This network is involved in the voluntary, top-down deployment of attention.<ref name="Riedl" /><ref name="Yuan" /><ref name="Bell" /><ref name="Yeo" /><ref name="Shafiei" /><ref name="Vossel">{{cite journal|last1=Vossel|first1=Simone|last2=Geng|first2=Joy J.|last3=Fink|first3=Gereon R.|title=Dorsal and Ventral Attention Systems: Distinct Neural Circuits but Collaborative Roles|journal=The Neuroscientist|date=2014|volume=20|issue=2|pages=150–159|doi=10.1177/1073858413494269|pmid=23835449|pmc=4107817}}</ref><ref name="Hutton">{{cite journal|last1=Hutton|first1=John S.|last2=Dudley|first2=Jonathan|last3=Horowitz-Kraus|first3=Tzipi|last4=DeWitt|first4=Tom|last5=Holland|first5=Scott K.|title=Functional Connectivity of Attention, Visual, and Language Networks During Audio, Illustrated, and Animated Stories in Preschool-Age Children|journal=Brain Connectivity|date=1 September 2019|volume=9|issue=7|pages=580–592|doi=10.1089/brain.2019.0679|pmid=31144523|pmc=6775495|ref=Hutton}}</ref> Within the dorsal attention network, the intraparietal sulcus and frontal eye fields influence the visual areas of the brain. These influencing factors allow for the orientation of attention.<ref>{{Cite journal|last1=Fox|first1=Michael D.|last2=Corbetta|first2=Maurizio|last3=Snyder|first3=Abraham Z.|last4=Vincent|first4=Justin L.|last5=Raichle|first5=Marcus E.|date=2006-06-27|title=Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems|journal=Proceedings of the National Academy of Sciences|language=en|volume=103|issue=26|pages=10046–10051|doi=10.1073/pnas.0604187103|issn=0027-8424|pmid=16788060|pmc=1480402|bibcode=2006PNAS..10310046F|doi-access=free}}</ref><ref name="Vossel" /><ref name="Bailey" />
+
*This network is involved in the voluntary, top-down deployment of attention.<ref name="Riedl" /><ref name="Yuan" /><ref name="Bell" /><ref name="Yeo" /><ref name="Shafiei" /><ref name="Vossel">{{cite journal|last1=Vossel|first1=Simone|last2=Geng|first2=Joy J.|last3=Fink|first3=Gereon R.|title=Dorsal and Ventral Attention Systems: Distinct Neural Circuits but Collaborative Roles|journal=The Neuroscientist|date=2014|volume=20|issue=2|pages=150–159|doi=10.1177/1073858413494269|pmid=23835449|pmc=4107817}}</ref><ref name="Hutton">{{cite journal|last1=Hutton|first1=John S.|last2=Dudley|first2=Jonathan|last3=Horowitz-Kraus|first3=Tzipi|last4=DeWitt|first4=Tom|last5=Holland|first5=Scott K.|title=Functional Connectivity of Attention, Visual, and Language Networks During Audio, Illustrated, and Animated Stories in Preschool-Age Children|journal=Brain Connectivity|date=1 September 2019|volume=9|issue=7|pages=580–592|doi=10.1089/brain.2019.0679|pmid=31144523|pmc=6775495|ref=Hutton}}</ref> Within the dorsal attention network, the intraparietal sulcus and frontal eye fields influence the visual areas of the brain. These influencing factors allow for the orientation of attention.<ref>{{Cite journal|last1=Fox|first1=Michael D.|last2=Corbetta|first2=Maurizio|last3=Snyder|first3=Abraham Z.|last4=Vincent|first4=Justin L.|last5=Raichle|first5=Marcus E.|date=2006-06-27|title=Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems|journal=Proceedings of the National Academy of Sciences|language=en|volume=103|issue=26|pages=10046–10051|doi=10.1073/pnas.0604187103|issn=0027-8424|pmid=16788060|pmc=1480402|bibcode=2006PNAS..10310046F|doi-access=free}}</ref><ref name="Vossel" /><ref name="Bailey" />
      第70行: 第70行:  
*这个网络参与了自发的、自上而下的注意力分配。在背侧注意网络中,顶内沟和额眼影响大脑的视觉区域。这些影响因素决定了注意力的方向。
 
*这个网络参与了自发的、自上而下的注意力分配。在背侧注意网络中,顶内沟和额眼影响大脑的视觉区域。这些影响因素决定了注意力的方向。
   −
===Control (Lateral frontoparietal)===
+
===Control (Lateral frontoparietal) ===
 
{{Main|Frontoparietal network}}
 
{{Main|Frontoparietal network}}
 
*This network initiates and modulates cognitive control and comprises 18 sub-regions of the brain.<ref>{{Cite journal|last1=Scolari|first1=Miranda|last2=Seidl-Rathkopf|first2=Katharina N|last3=Kastner|first3=Sabine|date=2015-02-01|title=Functions of the human frontoparietal attention network: Evidence from neuroimaging|journal=Current Opinion in Behavioral Sciences|series=Cognitive control|volume=1|pages=32–39|doi=10.1016/j.cobeha.2014.08.003|issn=2352-1546|pmid=27398396|pmc=4936532}}</ref> There is a strong correlation between fluid intelligence and the involvement of the fronto-parietal network with other networks.<ref>{{Cite journal|last1=Marek|first1=Scott|last2=Dosenbach|first2=Nico U. F.|date=June 2018|title=The frontoparietal network: function, electrophysiology, and importance of individual precision mapping|journal=Dialogues in Clinical Neuroscience|volume=20|issue=2|pages=133–140|doi=10.31887/DCNS.2018.20.2/smarek|issn=1294-8322|pmc=6136121|pmid=30250390}}</ref>
 
*This network initiates and modulates cognitive control and comprises 18 sub-regions of the brain.<ref>{{Cite journal|last1=Scolari|first1=Miranda|last2=Seidl-Rathkopf|first2=Katharina N|last3=Kastner|first3=Sabine|date=2015-02-01|title=Functions of the human frontoparietal attention network: Evidence from neuroimaging|journal=Current Opinion in Behavioral Sciences|series=Cognitive control|volume=1|pages=32–39|doi=10.1016/j.cobeha.2014.08.003|issn=2352-1546|pmid=27398396|pmc=4936532}}</ref> There is a strong correlation between fluid intelligence and the involvement of the fronto-parietal network with other networks.<ref>{{Cite journal|last1=Marek|first1=Scott|last2=Dosenbach|first2=Nico U. F.|date=June 2018|title=The frontoparietal network: function, electrophysiology, and importance of individual precision mapping|journal=Dialogues in Clinical Neuroscience|volume=20|issue=2|pages=133–140|doi=10.31887/DCNS.2018.20.2/smarek|issn=1294-8322|pmc=6136121|pmid=30250390}}</ref>
第116行: 第116行:  
*Spatial attention<ref name="Riedl" /><ref name="Bressler" />
 
*Spatial attention<ref name="Riedl" /><ref name="Bressler" />
 
*Language<ref name="Bressler" /><ref name="Hutton" />
 
*Language<ref name="Bressler" /><ref name="Hutton" />
*Lateral visual<ref name="Yuan" /><ref name="Bell" /><ref name="Heine" />
+
* Lateral visual<ref name="Yuan" /><ref name="Bell" /><ref name="Heine" />
* Temporal<ref name="Yeo" /><ref name="Shafiei" />
+
*Temporal<ref name="Yeo" /><ref name="Shafiei" />
 
*Visual perception/imagery<ref name="Hutton" />
 
*Visual perception/imagery<ref name="Hutton" />
   第154行: 第154行:  
*
 
*
   −
==References==
+
== References==
 
{{reflist|30em}}
 
{{reflist|30em}}
  
43

个编辑

导航菜单