更改

跳到导航 跳到搜索
目录框架
第15行: 第15行:     
== 书籍目录 ==
 
== 书籍目录 ==
 +
'''<big>1 概率、图和因果模型介绍  Introduction to Probabilities, Graphs, and Causal Models 1</big>'''
   −
# '''概率、图和因果模型介绍  Introduction to Probabilities, Graphs, and Causal Models''' 
+
'''1.1 概率论介绍  Introduction to Probability Theory 1'''
## 概率论介绍  Introduction to Probability Theory
  −
### 为什么需要概率  Why Probabilities?
  −
### 概率论的基本概念  Basic Concepts in Probability Theory
  −
### Combining Predictive and Diagnostic Supports  1.1.4 Random Variables and Expectations 8  1.1.5 Conditional Independence and Graphoids 11
  −
## 图和概率  Graphs and Probabilities
  −
# '''推断因果理论  A Theory of Inferred Causation'''
  −
1 Introduction to Probabilities, Graphs, and Causal Models 1
  −
 
  −
1.1 Introduction to Probability Theory 1
      
1.1.1 Why Probabilities? 1
 
1.1.1 Why Probabilities? 1
第37行: 第29行:  
1.1.5 Conditional Independence and Graphoids 11
 
1.1.5 Conditional Independence and Graphoids 11
   −
1.2 Graphs and Probabilities 12
+
'''1.2 图和概率  Graphs and Probabilities 12'''
    
1.2.1 Graphical Notation and Terminology 12
 
1.2.1 Graphical Notation and Terminology 12
第47行: 第39行:  
1.2.4 Inference with Bayesian Networks 20
 
1.2.4 Inference with Bayesian Networks 20
   −
1.3 Causal Bayesian Networks 21
+
'''1.3 Causal Bayesian Networks 21'''
    
1.3.1 Causal Networks as Oracles for Interventions 22
 
1.3.1 Causal Networks as Oracles for Interventions 22
第53行: 第45行:  
1.3.2 Causal Relationships and Their Stability 24
 
1.3.2 Causal Relationships and Their Stability 24
   −
1.4 Functional Causal Models 26
+
'''1.4 Functional Causal Models 26'''
    
1.4.1 Structural Equations 27
 
1.4.1 Structural Equations 27
第63行: 第55行:  
1.4.4 Counterfactuals in Functional Models 33
 
1.4.4 Counterfactuals in Functional Models 33
   −
1.5 Causal versus Statistical Terminology 38
+
'''1.5 Causal versus Statistical Terminology 38'''
 +
 
 +
'''<big>2 推断因果理论  A Theory of Inferred Causation 41</big>'''
 +
 
 +
'''2.1 Introduction – The Basic Intuitions 42'''
 +
 
 +
'''2.2 The Causal Discovery Framework 43'''
 +
 
 +
'''2.3 Model Preference (Occam’s Razor) 45'''
 +
 
 +
'''2.4 Stable Distributions 48'''
 +
 
 +
'''2.5 Recovering DAG Structures 49'''
 +
 
 +
'''2.6 Recovering Latent Structures 51'''
 +
 
 +
'''2.7 Local Criteria for Inferring Causal Relations 54'''
 +
 
 +
'''2.8 Nontemporal Causation and Statistical Time 57'''
 +
 
 +
'''2.9 Conclusions 59'''
 +
 
 +
2.9.1 On Minimality, Markov, and Stability 61
 +
 
 +
'''<big>3 Causal Diagrams and the Identification of Causal Effects 65</big>'''
 +
 
 +
'''3.1 Introduction 66'''
 +
 
 +
'''3.2 Intervention in Markovian Models 68'''
 +
 
 +
3.2.1 Graphs as Models of Interventions 68
 +
 
 +
3.2.2 Interventions as Variables 70
 +
 
 +
3.2.3 Computing the Effect of Interventions 72
 +
 
 +
3.2.4 Identification of Causal Quantities 77
 +
 
 +
'''3.3 Controlling Confounding Bias 78'''
 +
 
 +
3.3.1 The Back-Door Criterion 79
 +
 
 +
3.3.2 The Front-Door Criterion 81
 +
 
 +
3.3.3 Example: Smoking and the Genotype Theory 83
 +
 
 +
3.4 A Calculus of Intervention 85
 +
 
 +
3.4.1 Preliminary Notation 85
 +
 
 +
3.4.2 Inference Rules 85
 +
 
 +
3.4.3 Symbolic Derivation of Causal Effects: An Example 86
 +
 
 +
3.4.4 Causal Inference by Surrogate Experiments 88
 +
 
 +
3.5 Graphical Tests of Identifiability 89
 +
 
 +
3.5.1 Identifying Models 91
 +
 
 +
3.5.2 Nonidentifying Models 93
 +
 
 +
3.6 Discussion 94
 +
 
 +
3.6.1 Qualifications and Extensions 94
 +
 
 +
3.6.2 Diagrams as a Mathematical Language 96
 +
 
 +
3.6.3 Translation from Graphs to Potential Outcomes 98
 +
 
 +
3.6.4 Relations to Robins’s G-Estimation 102
 +
 
 +
4 Actions, Plans, and Direct Effects 107
 +
 
 +
4.1 Introduction 108
 +
 
 +
4.1.1 Actions, Acts, and Probabilities 108
 +
 
 +
4.1.2 Actions in Decision Analysis 110
 +
 
 +
4.1.3 Actions and Counterfactuals 112
 +
 
 +
4.2 Conditional Actions and Stochastic Policies 113
 +
 
 +
4.3 When Is the Effect of an Action Identifiable? 114
 +
 
 +
4.3.1 Graphical Conditions for Identification 114
 +
 
 +
4.3.2 Remarks on Efficiency 116
 +
 
 +
4.3.3 Deriving a Closed-Form Expression
 +
 
 +
for Control Queries 117
 +
 
 +
4.3.4 Summary 118
 +
 
 +
4.4 The Identification of Dynamic Plans 118
 +
 
 +
4.4.1 Motivation 118
 +
 
 +
4.4.2 Plan Identification: Notation and Assumptions 120
 +
 
 +
4.4.3 Plan Identification: The Sequential Back-Door Criterion 121
 +
 
 +
4.4.4 Plan Identification: A Procedure 124
 +
 
 +
4.5 Direct and Indirect Effects 126
 +
 
 +
4.5.1 Direct versus Total Effects 126
 +
 
 +
4.5.2 Direct Effects, Definition, and Identification 127
 +
 
 +
4.5.3 Example: Sex Discrimination in College Admission 128
 +
 
 +
4.5.4 Natural Direct Effects 130
 +
 
 +
4.5.5 Indirect Effects and the Mediation Formula 132
 +
 
 +
5 Causality and Structural Models in Social Science and Economics 133
 +
 
 +
5.1 Introduction 134
 +
 
 +
5.1.1 Causality in Search of a Language 134
 +
 
 +
5.1.2 SEM: How Its Meaning Became Obscured 135
 +
 
 +
5.1.3 Graphs as a Mathematical Language 138
 +
 
 +
5.2 Graphs and Model Testing 140
 +
 
 +
5.2.1 The Testable Implications of Structural Models 140
 +
 
 +
5.2.2 Testing the Testable 144
 +
 
 +
5.2.3 Model Equivalence 145
 +
 
 +
5.3 Graphs and Identifiability 149
 +
 
 +
5.3.1 Parameter Identification in Linear Models 149
 +
 
 +
5.3.2 Comparison to Nonparametric Identification 154
 +
 
 +
5.3.3 Causal Effects: The Interventional Interpretation of
 +
 
 +
Structural Equation Models 157
 +
 
 +
5.4 Some Conceptual Underpinnings 159
 +
 
 +
5.4.1 What Do Structural Parameters Really Mean? 159
 +
 
 +
5.4.2 Interpretation of Effect Decomposition 163
 +
 
 +
5.4.3 Exogeneity, Superexogeneity, and Other Frills 165
 +
 
 +
5.5 Conclusion 170
 +
 
 +
5.6 Postscript for the Second Edition 171
 +
 
 +
5.6.1 An Econometric Awakening?   171
 +
 
 +
5.6.2 Identification in Linear Models  171
 +
 
 +
5.6.3 Robustness of Causal Claims  172
 +
 
 +
6 Simpson’s Paradox, Confounding, and Collapsibility 173
 +
 
 +
6.1 Simpson’s Paradox: An Anatomy 174
 +
 
 +
6.1.1 A Tale of a Non-Paradox 174
 +
 
 +
6.1.2 A Tale of Statistical Agony 175
 +
 
 +
6.1.3 Causality versus Exchangeability 177
 +
 
 +
6.1.4 A Paradox Resolved (Or: What Kind of Machine Is Man?) 180
 +
 
 +
6.2 Why There Is No Statistical Test for Confounding, Why Many
 +
 
 +
Think There Is, and Why They Are Almost Right 182
 +
 
 +
6.2.1 Introduction 182
 +
 
 +
6.2.2 Causal and Associational Definitions 184
 +
 
 +
6.3 How the Associational Criterion Fails 185
 +
 
 +
6.3.1 Failing Sufficiency via Marginality 185
 +
 
 +
6.3.2 Failing Sufficiency via Closed-World Assumptions 186
 +
 
 +
6.3.3 Failing Necessity via Barren Proxies 186
 +
 
 +
6.3.4 Failing Necessity via Incidental Cancellations 188
 +
 
 +
6.4 Stable versus Incidental Unbiasedness 189
 +
 
 +
6.4.1 Motivation 189
 +
 
 +
6.4.2 Formal Definitions 191
 +
 
 +
6.4.3 Operational Test for Stable No-Confounding 192
 +
 
 +
6.5 Confounding, Collapsibility, and Exchangeability 193
 +
 
 +
6.5.1 Confounding and Collapsibility 193
 +
 
 +
6.5.2 Confounding versus Confounders 194
 +
 
 +
6.5.3 Exchangeability versus Structural Analysis of Confounding 196
 +
 
 +
6.6 Conclusions 199
 +
 
 +
7 The Logic of Structure-Based Counterfactuals 201
 +
 
 +
7.1 Structural Model Semantics 202
 +
 
 +
7.1.1 Definitions: Causal Models, Actions, and Counterfactuals 202
 +
 
 +
7.1.2 Evaluating Counterfactuals: Deterministic Analysis 207
 +
 
 +
7.1.3 Evaluating Counterfactuals: Probabilistic Analysis 212
 +
 
 +
7.1.4 The Twin Network Method 213
 +
 
 +
7.2 Applications and Interpretation of Structural Models 215
 +
 
 +
7.2.1 Policy Analysis in Linear Econometric Models:
 +
 
 +
An Example 215
 +
 
 +
7.2.2 The Empirical Content of Counterfactuals 217
 +
 
 +
7.2.3 Causal Explanations, Utterances, and Their Interpretation 221
 +
 
 +
7.2.4 From Mechanisms to Actions to Causation 223
 +
 
 +
7.2.5 Simon’s Causal Ordering 226
 +
 
 +
7.3 Axiomatic Characterization 228
 +
 
 +
7.3.1 The Axioms of Structural Counterfactuals 228
 +
 
 +
7.3.2 Causal Effects from Counterfactual Logic: An Example 231
 +
 
 +
7.3.3 Axioms of Causal Relevance 234
 +
 
 +
7.4 Structural and Similarity-Based Counterfactuals 238
 +
 
 +
7.4.1 Relations to Lewis’s Counterfactuals 238
 +
 
 +
7.4.2 Axiomatic Comparison 240
 +
 
 +
7.4.3 Imaging versus Conditioning 242
 +
 
 +
7.4.4 Relations to the Neyman–Rubin Framework 243
 +
 
 +
7.4.5 Exogeneity and Instruments: Counterfactual and
 +
 
 +
Graphical Definitions 245
 +
 
 +
7.5 Structural versus Probabilistic Causality 249
 +
 
 +
7.5.1 The Reliance on Temporal Ordering 249
 +
 
 +
7.5.2 The Perils of Circularity 250
 +
 
 +
7.5.3 Challenging the Closed-World Assumption, with Children 252
 +
 
 +
7.5.4 Singular versus General Causes 253
 +
 
 +
7.5.5 Summary 256
 +
 
 +
8 Imperfect Experiments: Bounding Effects and Counterfactuals 259
 +
 
 +
8.1 Introduction 259
 +
 
 +
8.1.1 Imperfect and Indirect Experiments 259
 +
 
 +
8.1.2 Noncompliance and Intent to Treat 261
 +
 
 +
8.2 Bounding Causal Effects with Instrumental Variables  262
 +
 
 +
8.2.1 Problem Formulation: Constrained Optimization 262
 +
 
 +
8.2.2 Canonical Partitions: The Evolution of
 +
 
 +
Finite-Response Variables 263
 +
 
 +
8.2.3 Linear Programming Formulation 266
 +
 
 +
8.2.4 The Natural Bounds 268
 +
 
 +
8.2.5 Effect of Treatment on the Treated (ETT) 269
 +
 
 +
8.2.6 Example: The Effect of Cholestyramine 270
 +
 
 +
8.3 Counterfactuals and Legal Responsibility 271
 +
 
 +
8.4 A Test for Instruments 274
 +
 
 +
8.5 A Bayesian Approach to Noncompliance 275
 +
 
 +
8.5.1 Bayesian Methods and Gibbs Sampling 275
 +
 
 +
8.5.2 The Effects of Sample Size and Prior Distribution 277
 +
 
 +
8.5.3 Causal Effects from Clinical Data with Imperfect
 +
 
 +
Compliance 277
 +
 
 +
8.5.4 Bayesian Estimate of Single-Event Causation 280
 +
 
 +
8.6 Conclusion 281
 +
 
 +
9 Probability of Causation: Interpretation and Identification 283
 +
 
 +
9.1 Introduction 283
 +
 
 +
9.2 Necessary and Sufficient Causes: Conditions of Identification 286
 +
 
 +
9.2.1 Definitions, Notation, and Basic Relationships 286
 +
 
 +
9.2.2 Bounds and Basic Relationships under Exogeneity 289
 +
 
 +
9.2.3 Identifiability under Monotonicity and Exogeneity 291
 +
 
 +
9.2.4 Identifiability under Monotonicity and Nonexogeneity 293
 +
 
 +
9.3 Examples and Applications 296
 +
 
 +
9.3.1 Example 1: Betting against a Fair Coin 296
 +
 
 +
9.3.2 Example 2: The Firing Squad 297
 +
 
 +
9.3.3 Example 3: The Effect of Radiation on Leukemia 299
 +
 
 +
9.3.4 Example 4: Legal Responsibility from Experimental and
 +
 
 +
Nonexperimental Data 302
 +
 
 +
9.3.5 Summary of Results 303
 +
 
 +
9.4 Identification in Nonmonotonic Models 304
 +
 
 +
9.5 Conclusions 307
 +
 
 +
10 The Actual Cause 309
 +
 
 +
10.1 Introduction: The Insufficiency of Necessary Causation 309
 +
 
 +
10.1.1 Singular Causes Revisited 309
 +
 
 +
10.1.2 Preemption and the Role of Structural Information 311
 +
 
 +
10.1.3 Overdetermination and Quasi-Dependence 313
 +
 
 +
10.1.4 Mackie’s INUS Condition 313
 +
 
 +
10.2 Production, Dependence, and Sustenance 316
 +
 
 +
10.3 Causal Beams and Sustenance-Based Causation 318
 +
 
 +
10.3.1 Causal Beams: Definitions and Implications 318
 +
 
 +
10.3.2 Examples: From Disjunction to General Formulas 320
 +
 
 +
10.3.3 Beams, Preemption, and the Probability of Single-Event Causation 322
 +
 
 +
10.3.4 Path-Switching Causation 324
 +
 
 +
10.3.5 Temporal Preemption 325
 +
 
 +
10.4 Conclusions 327
 +
 
 +
11 Reflections, Elaborations, and Discussions with Readers 331
 +
 
 +
11.1 Causal, Statistical, and Graphical Vocabulary  331
 +
 
 +
11.1.1 Is the Causal-Statistical Dichotomy Necessary?  331
 +
 
 +
11.1.2 d-Separation without Tears (Chapter 1, pp. 16–18)  335
 +
 
 +
11.2 Reversing Statistical Time (Chapter 2, p. 58–59)  337
 +
 
 +
11.3 Estimating Causal Effects  338
 +
 
 +
11.3.1 The Intuition behind the Back-Door Criterion (Chapter 3, p. 79)  338
 +
 
 +
11.3.2 Demystifying “Strong Ignorability” 341
 +
 
 +
11.3.3 Alternative Proof of the Back-Door Criterion  344
 +
 
 +
11.3.4 Data vs. Knowledge in Covariate Selection  346
 +
 
 +
11.3.5 Understanding Propensity Scores  348
 +
 
 +
11.3.6 The Intuition behind do-Calculus  352
 +
 
 +
11.3.7 The Validity of G-Estimation  352
 +
 
 +
11.4 Policy Evaluation and the do-Operator  354
 +
 
 +
11.4.1 Identifying Conditional Plans (Section 4.2, p. 113)  354
 +
 
 +
11.4.2 The Meaning of Indirect Effects  355
 +
 
 +
11.4.3 Can do(x) Represent Practical Experiments?  358
 +
 
 +
11.4.4 Is the do(x) Operator Universal?  359
 +
 
 +
11.4.5 Causation without Manipulation!!!   361
 +
 
 +
11.4.6 Hunting Causes with Cartwright  362
 +
 
 +
11.4.7 The Illusion of Nonmodularity  364
 +
 
 +
11.5 Causal Analysis in Linear Structural Models  366
 +
 
 +
11.5.1 General Criterion for Parameter Identification (Chapter 5, pp. 149–54)  366
 +
 
 +
11.5.2 The Causal Interpretation of Structural Coefficients  366
 +
 
 +
11.5.3 Defending the Causal Interpretation of SEM (or, SEM Survival Kit)  368
 +
 
 +
11.5.4 Where Is Economic Modeling Today? – Courting Causes with Heckman  374
 +
 
 +
11.5.5 External Variation versus Surgery  376
 +
 
 +
11.6 Decisions and Confounding (Chapter 6)  380
 +
 
 +
11.6.1 Simpson’s Paradox and Decision Trees  380
 +
 
 +
11.6.2 Is Chronological Information Sufficient for Decision Trees?  382
 +
 
 +
11.6.3 Lindley on Causality, Decision Trees, and Bayesianism  384
 +
 
 +
11.6.4 Why Isn’t Confounding a Statistical Concept?  387
 +
 
 +
11.7 The Calculus of Counterfactuals  389
 +
 
 +
11.7.1 Counterfactuals in Linear Systems  389
   −
2 A Theory of Inferred Causation 41
+
11.7.2 The Meaning of Counterfactuals  391
   −
2.1 Introduction – The Basic Intuitions 42
+
11.7.3 d-Separation of Counterfactuals  393
   −
2.2 The Causal Discovery Framework 43
+
11.8 Instrumental Variables and Noncompliance  395
   −
2.3 Model Preference (Occam’s Razor) 45
+
11.8.1 Tight Bounds under Noncompliance   395
   −
2.4 Stable Distributions 48
+
11.9 More on Probabilities of Causation  396
   −
2.5 Recovering DAG Structures 49
+
11.9.1 Is “Guilty with Probability One” Ever Possible?  396
   −
2.6 Recovering Latent Structures 51
+
11.9.2 Tightening the Bounds on Probabilities of Causation  398
    
== 各章概要 ==
 
== 各章概要 ==
    
==='''概率、图和因果模型介绍'''===
 
==='''概率、图和因果模型介绍'''===
134

个编辑

导航菜单