更改

跳到导航 跳到搜索
删除291字节 、 2022年4月16日 (六) 22:44
无编辑摘要
第10行: 第10行:  
[[File:Generalized biogeochemical cycle.jpg|thumb|upright=1.2|广义的生物地球化学循环<ref name=Moses2012 />]]
 
[[File:Generalized biogeochemical cycle.jpg|thumb|upright=1.2|广义的生物地球化学循环<ref name=Moses2012 />]]
   −
能量在生态系统中定向流动,以阳光(或化能自养生物的无机分子)的形式进入,并在营养级之间的众多转移过程中以热量的形式离开。然而,组成生物体的物质是被保存和循环利用的。与有机分子相关的六种最常见元素——碳、氮、氢、氧、磷和硫——以各种化学形式存在,并可能长期存在于大气、陆地、水体或者地表以下。地质过程,如风化、侵蚀、排水和大陆板块的俯冲,都在这种物质循环中发挥作用。由于地质学和化学在对于该过程的研究中起主要作用,无机物在生物体及其环境之间的循环便被称为生物地球化学循环。<ref name=OpenStax>[https://cnx.org/contents/ZdFkREJc@7/Biogeochemical-Cycles Biogeochemical Cycles] , ''OpenStax'', 9 May 2019. [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>
+
能量在生态系统中定向流动,以阳光(或化能自养生物的无机分子)的形式进入,并在营养级之间的众多转移过程中以热量的形式离开。然而,组成生物体的物质是被保存和循环利用的。与有机分子相关的六种最常见元素——碳、氮、氢、氧、磷和硫——以各种化学形式存在,并可能长期存在于大气、陆地、水体或者地表以下。地质过程,如风化、侵蚀、排水和大陆板块的俯冲,都在这种物质循环中发挥作用。由于地质学和化学在对于该过程的研究中起主要作用,无机物在生物体及其环境之间的循环便被称为生物地球化学循环。<ref name=OpenStax>[https://cnx.org/contents/ZdFkREJc@7/Biogeochemical-Cycles Biogeochemical Cycles] , ''OpenStax'', 9 May 2019. Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>
      第36行: 第36行:  
File:WhalePump.jpg|海洋中的“鲸泵”显示鲸鱼如何使得养分在大洋水柱中循环。
 
File:WhalePump.jpg|海洋中的“鲸泵”显示鲸鱼如何使得养分在大洋水柱中循环。
   −
File:Global carbon cycle.webp.png|人类活动引起的全球碳循环变化造成的影响令科学家们担忧。<ref>Avelar, S., van der Voort, T.S. and Eglinton, T.I. (2017) "Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations". ''Carbon balance and management'', '''12'''(1): 10.{{doi|10.1186/s13021-017-0077-x}}. [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>
+
File:Global carbon cycle.webp.png|人类活动引起的全球碳循环变化造成的影响令科学家们担忧。<ref>Avelar, S., van der Voort, T.S. and Eglinton, T.I. (2017) "Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations". ''Carbon balance and management'', '''12'''(1): 10.{{doi|10.1186/s13021-017-0077-x}}. Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>
    
</gallery>
 
</gallery>
第72行: 第72行:  
<center>
 
<center>
 
<gallery mode=packed style=float:center; heights=300px>
 
<gallery mode=packed style=float:center; heights=300px>
File:Simplified budget of carbon flows in the ocean.png|thumb|简单三箱模型 <small>海洋碳流的简化预算<ref name=Middelburg2019>Middelburg, J.J.(2019) ''Marine carbon biogeochemistry: a primer for earth system scientists'', page 5, Springer Nature. [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref></small>
+
File:Simplified budget of carbon flows in the ocean.png|thumb|简单三箱模型 <small>海洋碳流的简化预算<ref name=Middelburg2019>Middelburg, J.J.(2019) ''Marine carbon biogeochemistry: a primer for earth system scientists'', page 5, Springer Nature.Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref></small>
    
File:Simplified diagram of the global carbon cycle.jpg|thumb|更复杂的模型,有许多相互作用的箱子<br /><small>陆生有机碳在海洋中的输出和埋藏率 <ref name=Kandasamy2016 /></small>
 
File:Simplified diagram of the global carbon cycle.jpg|thumb|更复杂的模型,有许多相互作用的箱子<br /><small>陆生有机碳在海洋中的输出和埋藏率 <ref name=Kandasamy2016 /></small>
第81行: 第81行:       −
右上图显示了一个更复杂的模型,其中包含了许多相互作用的箱室。这里储库的质量代表碳储量,以Pg C为单位。碳交换通量以Pg C yr<sup>-1</sup>为单位,出现于大气和两个主要的碳汇,陆地和海洋之间。黑色的数字和箭头表示了1750年(工业革命之前)的碳库含量和交换通量的估计值。红色的箭头和对应的数字代表了2000-2009年人类活动导致的碳通量变化的年平均值。它们显示了1750年以来碳循环的变化情况。储库中的红色数字表示了自1750年至2011年,即工业革命开始以来人为碳的累积变化。<ref>{{cite journal |doi = 10.1063/1.1510279|title = Sinks for Anthropogenic Carbon|year = 2002|last1 = Sarmiento|first1 = Jorge L.|last2 = Gruber|first2 = Nicolas|journal = Physics Today|volume = 55|issue = 8|pages = 30–36|bibcode = 2002PhT....55h..30S}}</ref><ref>{{cite journal |doi = 10.13140/2.1.1081.8883|year = 2013|last1 = Chhabra|first1 = Abha|title = Carbon and Other Biogeochemical Cycles}}</ref><ref name=Kandasamy2016>{{cite journal |doi = 10.3389/fmars.2016.00259|title = Perspectives on the Terrestrial Organic Matter Transport and Burial along the Land-Deep Sea Continuum: Caveats in Our Understanding of Biogeochemical Processes and Future Needs|year = 2016|last1 = Kandasamy|first1 = Selvaraj|last2 = Nagender Nath|first2 = Bejugam|journal = Frontiers in Marine Science|volume = 3|doi-access = free}} [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>
+
右上图显示了一个更复杂的模型,其中包含了许多相互作用的箱室。这里储库的质量代表碳储量,以Pg C为单位。碳交换通量以Pg C yr<sup>-1</sup>为单位,出现于大气和两个主要的碳汇,陆地和海洋之间。黑色的数字和箭头表示了1750年(工业革命之前)的碳库含量和交换通量的估计值。红色的箭头和对应的数字代表了2000-2009年人类活动导致的碳通量变化的年平均值。它们显示了1750年以来碳循环的变化情况。储库中的红色数字表示了自1750年至2011年,即工业革命开始以来人为碳的累积变化。<ref>{{cite journal |doi = 10.1063/1.1510279|title = Sinks for Anthropogenic Carbon|year = 2002|last1 = Sarmiento|first1 = Jorge L.|last2 = Gruber|first2 = Nicolas|journal = Physics Today|volume = 55|issue = 8|pages = 30–36|bibcode = 2002PhT....55h..30S}}</ref><ref>{{cite journal |doi = 10.13140/2.1.1081.8883|year = 2013|last1 = Chhabra|first1 = Abha|title = Carbon and Other Biogeochemical Cycles}}</ref><ref name=Kandasamy2016>{{cite journal |doi = 10.3389/fmars.2016.00259|title = Perspectives on the Terrestrial Organic Matter Transport and Burial along the Land-Deep Sea Continuum: Caveats in Our Understanding of Biogeochemical Processes and Future Needs|year = 2016|last1 = Kandasamy|first1 = Selvaraj|last2 = Nagender Nath|first2 = Bejugam|journal = Frontiers in Marine Science|volume = 3|doi-access = free}} Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>
    
<br>
 
<br>
第87行: 第87行:  
==隔室==
 
==隔室==
 
===生物圈===
 
===生物圈===
[[File:Role of marine organisms in biogeochemical cycling.jpg|thumb|upright=2.1|海洋生物在南大洋生物地球化学循环中的作用  <ref name=Henley2020>{{cite journal |title = Changing Biogeochemistry of the Southern Ocean and Its Ecosystem Implications|year = 2020|doi = 10.3389/fmars.2020.00581|doi-access = free|last1 = Henley|first1 = Sian F.|last2 = Cavan|first2 = Emma L.|last3 = Fawcett|first3 = Sarah E.|last4 = Kerr|first4 = Rodrigo|last5 = Monteiro|first5 = Thiago|last6 = Sherrell|first6 = Robert M.|last7 = Bowie|first7 = Andrew R.|last8 = Boyd|first8 = Philip W.|last9 = Barnes|first9 = David K. A.|last10 = Schloss|first10 = Irene R.|last11 = Marshall|first11 = Tanya|last12 = Flynn|first12 = Raquel|last13 = Smith|first13 = Shantelle|journal = Frontiers in Marine Science|volume = 7}} [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>}}]]
+
[[File:Role of marine organisms in biogeochemical cycling.jpg|thumb|upright=2.1|海洋生物在南大洋生物地球化学循环中的作用  <ref name=Henley2020>{{cite journal |title = Changing Biogeochemistry of the Southern Ocean and Its Ecosystem Implications|year = 2020|doi = 10.3389/fmars.2020.00581|doi-access = free|last1 = Henley|first1 = Sian F.|last2 = Cavan|first2 = Emma L.|last3 = Fawcett|first3 = Sarah E.|last4 = Kerr|first4 = Rodrigo|last5 = Monteiro|first5 = Thiago|last6 = Sherrell|first6 = Robert M.|last7 = Bowie|first7 = Andrew R.|last8 = Boyd|first8 = Philip W.|last9 = Barnes|first9 = David K. A.|last10 = Schloss|first10 = Irene R.|last11 = Marshall|first11 = Tanya|last12 = Flynn|first12 = Raquel|last13 = Smith|first13 = Shantelle|journal = Frontiers in Marine Science|volume = 7}} Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>}}]]
 
[[File:Oxygen Cycle.jpg|thumb| 氧循环]]
 
[[File:Oxygen Cycle.jpg|thumb| 氧循环]]
微生物驱动了地球系统中大部分的生物地球化学循环。<ref>{{cite journal |title = The Microbial Engines That Drive Earth's Biogeochemical Cycles|year = 2008|doi = 10.1126/science.1153213|last1 = Falkowski|first1 = P. G.|last2 = Fenchel|first2 = T.|last3 = Delong|first3 = E. F.|journal = Science|volume = 320|issue = 5879|pages = 1034–1039|pmid = 18497287|bibcode = 2008Sci...320.1034F}}</ref><ref name=Zakem2020>{{cite journal |title = Redox-informed models of global biogeochemical cycles|year = 2020|doi = 10.1038/s41467-020-19454-w|last1 = Zakem|first1 = Emily J.|last2 = Polz|first2 = Martin F.|last3 = Follows|first3 = Michael J.|journal = Nature Communications|volume = 11|issue = 1|page = 5680|pmc = 7656242|bibcode = 2020NatCo..11.5680Z}} [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>
+
微生物驱动了地球系统中大部分的生物地球化学循环。<ref>{{cite journal |title = The Microbial Engines That Drive Earth's Biogeochemical Cycles|year = 2008|doi = 10.1126/science.1153213|last1 = Falkowski|first1 = P. G.|last2 = Fenchel|first2 = T.|last3 = Delong|first3 = E. F.|journal = Science|volume = 320|issue = 5879|pages = 1034–1039|pmid = 18497287|bibcode = 2008Sci...320.1034F}}</ref><ref name=Zakem2020>{{cite journal |title = Redox-informed models of global biogeochemical cycles|year = 2020|doi = 10.1038/s41467-020-19454-w|last1 = Zakem|first1 = Emily J.|last2 = Polz|first2 = Martin F.|last3 = Follows|first3 = Michael J.|journal = Nature Communications|volume = 11|issue = 1|page = 5680|pmc = 7656242|bibcode = 2020NatCo..11.5680Z}}Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>
      第96行: 第96行:     
===水圈===
 
===水圈===
海洋覆盖了地球表面的70%以上,并且具有很强的异质性。海洋生产区和沿海生态系统只占海洋表面积的一小部分,但对微生物群落(占海洋生物量的90%)<ref>{{cite journal |doi = 10.1007/s12526-011-0084-1|title = The Census of Marine Life—evolution of worldwide marine biodiversity research|year = 2011|last1 = Alexander|first1 = Vera|last2 = Miloslavich|first2 = Patricia|last3 = Yarincik|first3 = Kristen|journal = Marine Biodiversity|volume = 41|issue = 4|pages = 545–554}}</ref>所进行的全球生物地球化学循环有着巨大的影响。<ref name=Murillo2019 />近年来的工作主要集中在碳和常量营养元素(如氮、磷和硅酸盐)的循环上,对其它重要元素(如硫或微量元素)的研究较少,反映的相关的技术和后勤问题。这些海域以及构成其生态系统的分类群正日益受到人类活动的巨大压力,影响着海洋生物以及能量和营养物质的循环。<ref>Galton, D. (1884) [https://www.proquest.com/openview/792c496cb0a1bdf11778db87c126ff44/1?pq-origsite=gscholar&cbl=1816417 10th Meeting: report of the royal commission on metropolitan sewage]. ''J. Soc. Arts'', '''33''': 290.</ref><ref>{{cite journal |doi = 10.2307/1294478|jstor = 1294478|last1 = Hasler|first1 = Arthur D.|title = Cultural Eutrophication is Reversible|journal = BioScience|year = 1969|volume = 19|issue = 5|pages = 425–431}}</ref><ref>{{cite journal |doi = 10.1002/2016GB005586|title = A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean|year = 2017|last1 = Jickells|first1 = T. D.|last2 = Buitenhuis|first2 = E.|last3 = Altieri|first3 = K.|last4 = Baker|first4 = A. R.|last5 = Capone|first5 = D.|last6 = Duce|first6 = R. A.|last7 = Dentener|first7 = F.|last8 = Fennel|first8 = K.|last9 = Kanakidou|first9 = M.|last10 = Laroche|first10 = J.|last11 = Lee|first11 = K.|last12 = Liss|first12 = P.|last13 = Middelburg|first13 = J. J.|last14 = Moore|first14 = J. K.|last15 = Okin|first15 = G.|last16 = Oschlies|first16 = A.|last17 = Sarin|first17 = M.|last18 = Seitzinger|first18 = S.|last19 = Sharples|first19 = J.|last20 = Singh|first20 = A.|last21 = Suntharalingam|first21 = P.|last22 = Uematsu|first22 = M.|last23 = Zamora|first23 = L. M.|journal = Global Biogeochemical Cycles|volume = 31|issue = 2|page = 289|bibcode = 2017GBioC..31..289J|hdl = 1874/348077}}</ref>一个关键的例子是人为富营养化的影响,农业生产的径流导致沿海生态系统的氮和磷富集,使生产力大大提高并造成藻类大量繁殖,水体和海床脱氧,温室气体排放增加,<ref name=Bouwman2005>{{cite journal |doi = 10.1029/2004GB002314|title = Exploring changes in river nitrogen export to the world's oceans|year = 2005|last1 = Bouwman|first1 = A. F.|last2 = Van Drecht|first2 = G.|last3 = Knoop|first3 = J. M.|last4 = Beusen|first4 = A. H. W.|last5 = Meinardi|first5 = C. R.|journal = Global Biogeochemical Cycles|volume = 19|issue = 1|bibcode = 2005GBioC..19.1002B}}</ref>直接影响了区域和全球的氮循环和碳循环。然而,有机物从大陆流入沿海生态系统只是全球变化对微生物群落造成的一系列胁迫之一。气候变化还导致了冰冻圈的变化,冰川和永久冻土融化加剧了海洋分层,而不同生物群落中氧化还原状态的变化正以前所未有的速度迅速重塑微生物组合。<ref>{{cite journal |doi = 10.1111/gcb.12754|title = Climate change and dead zones|year = 2015|last1 = Altieri|first1 = Andrew H.|last2 = Gedan|first2 = Keryn B.|journal = Global Change Biology|volume = 21|issue = 4|pages = 1395–1406|pmid = 25385668|bibcode = 2015GCBio..21.1395A}}</ref><ref name=Breitburg2018>{{cite journal |doi = 10.1126/science.aam7240|title = Declining oxygen in the global ocean and coastal waters|year = 2018|last1 = Breitburg|first1 = Denise|last2 = Levin|first2 = Lisa A.|last3 = Oschlies|first3 = Andreas|last4 = Grégoire|first4 = Marilaure|last5 = Chavez|first5 = Francisco P.|last6 = Conley|first6 = Daniel J.|last7 = Garçon|first7 = Véronique|last8 = Gilbert|first8 = Denis|last9 = Gutiérrez|first9 = Dimitri|last10 = Isensee|first10 = Kirsten|last11 = Jacinto|first11 = Gil S.|last12 = Limburg|first12 = Karin E.|last13 = Montes|first13 = Ivonne|last14 = Naqvi|first14 = S. W. A.|last15 = Pitcher|first15 = Grant C.|last16 = Rabalais|first16 = Nancy N.|last17 = Roman|first17 = Michael R.|last18 = Rose|first18 = Kenneth A.|last19 = Seibel|first19 = Brad A.|last20 = Telszewski|first20 = Maciej|last21 = Yasuhara|first21 = Moriaki|last22 = Zhang|first22 = Jing|journal = Science|volume = 359|issue = 6371|pages = eaam7240|pmid = 29301986|bibcode = 2018Sci...359M7240B}}</ref><ref name=Cavicchioli2019>{{cite journal |doi = 10.1038/s41579-019-0222-5|title = Scientists' warning to humanity: Microorganisms and climate change|year = 2019|last1 = Cavicchioli|first1 = Ricardo|last2 = Ripple|first2 = William J.|last3 = Timmis|first3 = Kenneth N.|last4 = Azam|first4 = Farooq|last5 = Bakken|first5 = Lars R.|last6 = Baylis|first6 = Matthew|last7 = Behrenfeld|first7 = Michael J.|last8 = Boetius|first8 = Antje|last9 = Boyd|first9 = Philip W.|last10 = Classen|first10 = Aimée T.|last11 = Crowther|first11 = Thomas W.|last12 = Danovaro|first12 = Roberto|last13 = Foreman|first13 = Christine M.|last14 = Huisman|first14 = Jef|last15 = Hutchins|first15 = David A.|last16 = Jansson|first16 = Janet K.|last17 = Karl|first17 = David M.|last18 = Koskella|first18 = Britt|last19 = Mark Welch|first19 = David B.|last20 = Martiny|first20 = Jennifer B. H.|last21 = Moran|first21 = Mary Ann|last22 = Orphan|first22 = Victoria J.|last23 = Reay|first23 = David S.|last24 = Remais|first24 = Justin V.|last25 = Rich|first25 = Virginia I.|last26 = Singh|first26 = Brajesh K.|last27 = Stein|first27 = Lisa Y.|last28 = Stewart|first28 = Frank J.|last29 = Sullivan|first29 = Matthew B.|last30 = Van Oppen|first30 = Madeleine J. H.|journal = Nature Reviews Microbiology|volume = 17|issue = 9|pages = 569–586|pmid = 31213707|pmc = 7136171|display-authors = 1}}</ref><ref name=Hutchins2019>{{cite journal |doi = 10.1038/s41579-019-0178-5|title = Climate change microbiology — problems and perspectives|year = 2019|last1 = Hutchins|first1 = David A.|last2 = Jansson|first2 = Janet K.|last3 = Remais|first3 = Justin V.|last4 = Rich|first4 = Virginia I.|last5 = Singh|first5 = Brajesh K.|last6 = Trivedi|first6 = Pankaj|journal = Nature Reviews Microbiology|volume = 17|issue = 6|pages = 391–396|pmid = 31092905}}</ref><ref name=Murillo2019>{{cite journal |doi = 10.3389/fmars.2019.00657|doi-access = free|title = Editorial: Marine Microbiome and Biogeochemical Cycles in Marine Productive Areas|year = 2019|last1 = Murillo|first1 = Alejandro A.|last2 = Molina|first2 = Verónica|last3 = Salcedo-Castro|first3 = Julio|last4 = Harrod|first4 = Chris|journal = Frontiers in Marine Science|volume = 6}} [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>
+
海洋覆盖了地球表面的70%以上,并且具有很强的异质性。海洋生产区和沿海生态系统只占海洋表面积的一小部分,但对微生物群落(占海洋生物量的90%)<ref>{{cite journal |doi = 10.1007/s12526-011-0084-1|title = The Census of Marine Life—evolution of worldwide marine biodiversity research|year = 2011|last1 = Alexander|first1 = Vera|last2 = Miloslavich|first2 = Patricia|last3 = Yarincik|first3 = Kristen|journal = Marine Biodiversity|volume = 41|issue = 4|pages = 545–554}}</ref>所进行的全球生物地球化学循环有着巨大的影响。<ref name=Murillo2019 />近年来的工作主要集中在碳和常量营养元素(如氮、磷和硅酸盐)的循环上,对其它重要元素(如硫或微量元素)的研究较少,反映的相关的技术和后勤问题。这些海域以及构成其生态系统的分类群正日益受到人类活动的巨大压力,影响着海洋生物以及能量和营养物质的循环。<ref>Galton, D. (1884) [https://www.proquest.com/openview/792c496cb0a1bdf11778db87c126ff44/1?pq-origsite=gscholar&cbl=1816417 10th Meeting: report of the royal commission on metropolitan sewage]. ''J. Soc. Arts'', '''33''': 290.</ref><ref>{{cite journal |doi = 10.2307/1294478|jstor = 1294478|last1 = Hasler|first1 = Arthur D.|title = Cultural Eutrophication is Reversible|journal = BioScience|year = 1969|volume = 19|issue = 5|pages = 425–431}}</ref><ref>{{cite journal |doi = 10.1002/2016GB005586|title = A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean|year = 2017|last1 = Jickells|first1 = T. D.|last2 = Buitenhuis|first2 = E.|last3 = Altieri|first3 = K.|last4 = Baker|first4 = A. R.|last5 = Capone|first5 = D.|last6 = Duce|first6 = R. A.|last7 = Dentener|first7 = F.|last8 = Fennel|first8 = K.|last9 = Kanakidou|first9 = M.|last10 = Laroche|first10 = J.|last11 = Lee|first11 = K.|last12 = Liss|first12 = P.|last13 = Middelburg|first13 = J. J.|last14 = Moore|first14 = J. K.|last15 = Okin|first15 = G.|last16 = Oschlies|first16 = A.|last17 = Sarin|first17 = M.|last18 = Seitzinger|first18 = S.|last19 = Sharples|first19 = J.|last20 = Singh|first20 = A.|last21 = Suntharalingam|first21 = P.|last22 = Uematsu|first22 = M.|last23 = Zamora|first23 = L. M.|journal = Global Biogeochemical Cycles|volume = 31|issue = 2|page = 289|bibcode = 2017GBioC..31..289J|hdl = 1874/348077}}</ref>一个关键的例子是人为富营养化的影响,农业生产的径流导致沿海生态系统的氮和磷富集,使生产力大大提高并造成藻类大量繁殖,水体和海床脱氧,温室气体排放增加,<ref name=Bouwman2005>{{cite journal |doi = 10.1029/2004GB002314|title = Exploring changes in river nitrogen export to the world's oceans|year = 2005|last1 = Bouwman|first1 = A. F.|last2 = Van Drecht|first2 = G.|last3 = Knoop|first3 = J. M.|last4 = Beusen|first4 = A. H. W.|last5 = Meinardi|first5 = C. R.|journal = Global Biogeochemical Cycles|volume = 19|issue = 1|bibcode = 2005GBioC..19.1002B}}</ref>直接影响了区域和全球的氮循环和碳循环。然而,有机物从大陆流入沿海生态系统只是全球变化对微生物群落造成的一系列胁迫之一。气候变化还导致了冰冻圈的变化,冰川和永久冻土融化加剧了海洋分层,而不同生物群落中氧化还原状态的变化正以前所未有的速度迅速重塑微生物组合。<ref>{{cite journal |doi = 10.1111/gcb.12754|title = Climate change and dead zones|year = 2015|last1 = Altieri|first1 = Andrew H.|last2 = Gedan|first2 = Keryn B.|journal = Global Change Biology|volume = 21|issue = 4|pages = 1395–1406|pmid = 25385668|bibcode = 2015GCBio..21.1395A}}</ref><ref name=Breitburg2018>{{cite journal |doi = 10.1126/science.aam7240|title = Declining oxygen in the global ocean and coastal waters|year = 2018|last1 = Breitburg|first1 = Denise|last2 = Levin|first2 = Lisa A.|last3 = Oschlies|first3 = Andreas|last4 = Grégoire|first4 = Marilaure|last5 = Chavez|first5 = Francisco P.|last6 = Conley|first6 = Daniel J.|last7 = Garçon|first7 = Véronique|last8 = Gilbert|first8 = Denis|last9 = Gutiérrez|first9 = Dimitri|last10 = Isensee|first10 = Kirsten|last11 = Jacinto|first11 = Gil S.|last12 = Limburg|first12 = Karin E.|last13 = Montes|first13 = Ivonne|last14 = Naqvi|first14 = S. W. A.|last15 = Pitcher|first15 = Grant C.|last16 = Rabalais|first16 = Nancy N.|last17 = Roman|first17 = Michael R.|last18 = Rose|first18 = Kenneth A.|last19 = Seibel|first19 = Brad A.|last20 = Telszewski|first20 = Maciej|last21 = Yasuhara|first21 = Moriaki|last22 = Zhang|first22 = Jing|journal = Science|volume = 359|issue = 6371|pages = eaam7240|pmid = 29301986|bibcode = 2018Sci...359M7240B}}</ref><ref name=Cavicchioli2019>{{cite journal |doi = 10.1038/s41579-019-0222-5|title = Scientists' warning to humanity: Microorganisms and climate change|year = 2019|last1 = Cavicchioli|first1 = Ricardo|last2 = Ripple|first2 = William J.|last3 = Timmis|first3 = Kenneth N.|last4 = Azam|first4 = Farooq|last5 = Bakken|first5 = Lars R.|last6 = Baylis|first6 = Matthew|last7 = Behrenfeld|first7 = Michael J.|last8 = Boetius|first8 = Antje|last9 = Boyd|first9 = Philip W.|last10 = Classen|first10 = Aimée T.|last11 = Crowther|first11 = Thomas W.|last12 = Danovaro|first12 = Roberto|last13 = Foreman|first13 = Christine M.|last14 = Huisman|first14 = Jef|last15 = Hutchins|first15 = David A.|last16 = Jansson|first16 = Janet K.|last17 = Karl|first17 = David M.|last18 = Koskella|first18 = Britt|last19 = Mark Welch|first19 = David B.|last20 = Martiny|first20 = Jennifer B. H.|last21 = Moran|first21 = Mary Ann|last22 = Orphan|first22 = Victoria J.|last23 = Reay|first23 = David S.|last24 = Remais|first24 = Justin V.|last25 = Rich|first25 = Virginia I.|last26 = Singh|first26 = Brajesh K.|last27 = Stein|first27 = Lisa Y.|last28 = Stewart|first28 = Frank J.|last29 = Sullivan|first29 = Matthew B.|last30 = Van Oppen|first30 = Madeleine J. H.|journal = Nature Reviews Microbiology|volume = 17|issue = 9|pages = 569–586|pmid = 31213707|pmc = 7136171|display-authors = 1}}</ref><ref name=Hutchins2019>{{cite journal |doi = 10.1038/s41579-019-0178-5|title = Climate change microbiology — problems and perspectives|year = 2019|last1 = Hutchins|first1 = David A.|last2 = Jansson|first2 = Janet K.|last3 = Remais|first3 = Justin V.|last4 = Rich|first4 = Virginia I.|last5 = Singh|first5 = Brajesh K.|last6 = Trivedi|first6 = Pankaj|journal = Nature Reviews Microbiology|volume = 17|issue = 6|pages = 391–396|pmid = 31092905}}</ref><ref name=Murillo2019>{{cite journal |doi = 10.3389/fmars.2019.00657|doi-access = free|title = Editorial: Marine Microbiome and Biogeochemical Cycles in Marine Productive Areas|year = 2019|last1 = Murillo|first1 = Alejandro A.|last2 = Molina|first2 = Verónica|last3 = Salcedo-Castro|first3 = Julio|last4 = Harrod|first4 = Chris|journal = Frontiers in Marine Science|volume = 6}} Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>
      第108行: 第108行:       −
快速的碳循环案例如下图所示。这一循环包括环境和生物圈中生命体之间相对短期的地球化学过程。它包括碳在大气以及陆地和海洋生态系统、泥土和海底沉积物之间的运移。快速循环包括涉及光合作用的年周期和涉及植被生长和分解的年代周期。快速碳循环对人类活动的响应将决定气候变化许多更直接的影响。<ref name=Bush2020 /><ref>{{cite journal |doi = 10.1073/pnas.022055499|title = Atmospheric carbon dioxide levels for the last 500 million years|year = 2002|last1 = Rothman|first1 = D. H.|journal = Proceedings of the National Academy of Sciences|volume = 99|issue = 7|pages = 4167–4171|pmid = 11904360|pmc = 123620|bibcode = 2002PNAS...99.4167R|doi-access = free}}</ref><ref name=Carpinteri2019>{{cite journal |doi = 10.3390/sci1010017|title = Correlation between the Fluctuations in Worldwide Seismicity and Atmospheric Carbon Pollution|year = 2019|last1 = Carpinteri|first1 = Alberto|last2 = Niccolini|first2 = Gianni|journal = Sci|volume = 1|page = 17|doi-access = free}} [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License] .</ref><ref>{{Cite journal|last=Rothman|first=Daniel|date=January 2015|title=Earth's carbon cycle: A mathematical perspective|url=https://www.ams.org/bull/2015-52-01/S0273-0979-2014-01471-5/|journal=Bulletin of the American Mathematical Society|language=en|volume=52|issue=1|pages=47–64|doi=10.1090/S0273-0979-2014-01471-5|issn=0273-0979|hdl=1721.1/97900|hdl-access=free|access-date=2021-09-27|archive-date=2021-11-22|archive-url=https://web.archive.org/web/20211122221018/https://www.ams.org/journals/bull/2015-52-01/S0273-0979-2014-01471-5/|url-status=live}}</ref>
+
快速的碳循环案例如下图所示。这一循环包括环境和生物圈中生命体之间相对短期的地球化学过程。它包括碳在大气以及陆地和海洋生态系统、泥土和海底沉积物之间的运移。快速循环包括涉及光合作用的年周期和涉及植被生长和分解的年代周期。快速碳循环对人类活动的响应将决定气候变化许多更直接的影响。<ref name=Bush2020 /><ref>{{cite journal |doi = 10.1073/pnas.022055499|title = Atmospheric carbon dioxide levels for the last 500 million years|year = 2002|last1 = Rothman|first1 = D. H.|journal = Proceedings of the National Academy of Sciences|volume = 99|issue = 7|pages = 4167–4171|pmid = 11904360|pmc = 123620|bibcode = 2002PNAS...99.4167R|doi-access = free}}</ref><ref name=Carpinteri2019>{{cite journal |doi = 10.3390/sci1010017|title = Correlation between the Fluctuations in Worldwide Seismicity and Atmospheric Carbon Pollution|year = 2019|last1 = Carpinteri|first1 = Alberto|last2 = Niccolini|first2 = Gianni|journal = Sci|volume = 1|page = 17|doi-access = free}} Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License] .</ref><ref>{{Cite journal|last=Rothman|first=Daniel|date=January 2015|title=Earth's carbon cycle: A mathematical perspective|url=https://www.ams.org/bull/2015-52-01/S0273-0979-2014-01471-5/|journal=Bulletin of the American Mathematical Society|language=en|volume=52|issue=1|pages=47–64|doi=10.1090/S0273-0979-2014-01471-5|issn=0273-0979|hdl=1721.1/97900|hdl-access=free|access-date=2021-09-27|archive-date=2021-11-22|archive-url=https://web.archive.org/web/20211122221018/https://www.ams.org/journals/bull/2015-52-01/S0273-0979-2014-01471-5/|url-status=live}}</ref>
    
[[File:Carbon cycle.jpg|thumb|upright=1.8|center| 快速循环贯穿生物圈,包括陆地、大气和海洋之间的交换。黄色数字表示每年的自然碳通量,以十亿吨(gigatons)为单位。红色数字表示人类的贡献,白色数字表示被储存的碳。<ref name="nasacc">{{cite web|last1=Riebeek|first1=Holli|title=The Carbon Cycle|url=http://earthobservatory.nasa.gov/Features/CarbonCycle/?src=eoa-features|website=Earth Observatory|publisher=NASA|access-date=5 April 2018|date=16 June 2011|archive-url=https://web.archive.org/web/20160305010126/http://earthobservatory.nasa.gov/Features/CarbonCycle/?src=eoa-features|archive-date=5 March 2016|url-status=live|df=dmy-all}}</ref>]]
 
[[File:Carbon cycle.jpg|thumb|upright=1.8|center| 快速循环贯穿生物圈,包括陆地、大气和海洋之间的交换。黄色数字表示每年的自然碳通量,以十亿吨(gigatons)为单位。红色数字表示人类的贡献,白色数字表示被储存的碳。<ref name="nasacc">{{cite web|last1=Riebeek|first1=Holli|title=The Carbon Cycle|url=http://earthobservatory.nasa.gov/Features/CarbonCycle/?src=eoa-features|website=Earth Observatory|publisher=NASA|access-date=5 April 2018|date=16 June 2011|archive-url=https://web.archive.org/web/20160305010126/http://earthobservatory.nasa.gov/Features/CarbonCycle/?src=eoa-features|archive-date=5 March 2016|url-status=live|df=dmy-all}}</ref>]]
第119行: 第119行:     
==深层循环==
 
==深层循环==
陆地地下是地球上最大的碳储库,含有14-135Pg的碳和总生物量<ref>{{cite journal |doi = 10.1111/1574-6941.12196|title = Weighing the deep continental biosphere|year = 2014|last1 = McMahon|first1 = Sean|last2 = Parnell|first2 = John|journal = FEMS Microbiology Ecology|volume = 87|issue = 1|pages = 113–120|pmid = 23991863}}</ref>的2-19%。<ref>{{cite journal |doi = 10.1073/pnas.1203849109|title = Global distribution of microbial abundance and biomass in subseafloor sediment|year = 2012|last1 = Kallmeyer|first1 = J.|last2 = Pockalny|first2 = R.|last3 = Adhikari|first3 = R. R.|last4 = Smith|first4 = D. C.|last5 = d'Hondt|first5 = S.|journal = Proceedings of the National Academy of Sciences|volume = 109|issue = 40|pages = 16213–16216|pmid = 22927371|pmc = 3479597|doi-access = free}}</ref>微生物在这种环境下驱动有机和无机化合物的转化,从而控制生物地球化学循环。目前对于地下微生物生态学的了解主要是基于16S核糖体RNA(rRNA)基因序列。最近的估计显示,公共数据库中小于8%的16S rRNA序列来自于地下生物,<ref>{{cite journal |doi = 10.1128/mBio.00201-16|title = Status of the Archaeal and Bacterial Census: An Update|year = 2016|last1 = Schloss|first1 = Patrick D.|last2 = Girard|first2 = Rene A.|last3 = Martin|first3 = Thomas|last4 = Edwards|first4 = Joshua|last5 = Thrash|first5 = J. Cameron|journal = mBio|volume = 7|issue = 3|pmid = 27190214|pmc = 4895100}}</ref>且其中仅一小部分由基因组或分离物表示。因此,关于地下微生物代谢的可靠信息非常少。此外,关于地下生态系统中的生物体是如何在新陈代谢上互相关联的,我们知之甚少。一些基于栽培的同养群落研究<ref>{{cite journal |doi = 10.1093/femsre/fuw019|title = Decoding molecular interactions in microbial communities|year = 2016|last1 = Abreu|first1 = Nicole A.|last2 = Taga|first2 = Michiko E.|journal = FEMS Microbiology Reviews|volume = 40|issue = 5|pages = 648–663|pmid = 27417261|pmc = 5007284}}</ref><ref>{{cite journal |doi = 10.1186/s13040-015-0054-4|title = Interaction networks for identifying coupled molecular processes in microbial communities|year = 2015|last1 = Bosse|first1 = Magnus|last2 = Heuwieser|first2 = Alexander|last3 = Heinzel|first3 = Andreas|last4 = Nancucheo|first4 = Ivan|last5 = Melo Barbosa Dall'Agnol|first5 = Hivana|last6 = Lukas|first6 = Arno|last7 = Tzotzos|first7 = George|last8 = Mayer|first8 = Bernd|journal = BioData Mining|volume = 8|page = 21|pmid = 26180552|pmc = 4502522}}</ref><ref>{{cite journal |doi = 10.1111/j.1574-6941.2011.01237.x|title = Genetic characterization of denitrifier communities with contrasting intrinsic functional traits|year = 2012|last1 = Braker|first1 = Gesche|last2 = Dörsch|first2 = Peter|last3 = Bakken|first3 = Lars R.|journal = FEMS Microbiology Ecology|volume = 79|issue = 2|pages = 542–554|pmid = 22092293}}</ref>和对自然群落的小规模宏基因组学分析表明,<ref name=Hug2015>{{cite journal|doi = 10.1111/1462-2920.12930|title = Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages|year = 2016|last1 = Hug|first1 = Laura A.|last2 = Thomas|first2 = Brian C.|last3 = Sharon|first3 = Itai|last4 = Brown|first4 = Christopher T.|last5 = Sharma|first5 = Ritin|last6 = Hettich|first6 = Robert L.|last7 = Wilkins|first7 = Michael J.|last8 = Williams|first8 = Kenneth H.|last9 = Singh|first9 = Andrea|last10 = Banfield|first10 = Jillian F.|journal = Environmental Microbiology|volume = 18|issue = 1|pages = 159–173|pmid = 26033198|url = https://escholarship.org/uc/item/2f1480x2|access-date = 2021-09-27|archive-date = 2021-09-27|archive-url = https://web.archive.org/web/20210927050621/https://escholarship.org/uc/item/2f1480x2|url-status = live}}</ref><ref>{{cite journal |doi = 10.1073/pnas.1010732107|title = Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea|year = 2010|last1 = McCarren|first1 = J.|last2 = Becker|first2 = J. W.|last3 = Repeta|first3 = D. J.|last4 = Shi|first4 = Y.|last5 = Young|first5 = C. R.|last6 = Malmstrom|first6 = R. R.|last7 = Chisholm|first7 = S. W.|last8 = Delong|first8 = E. F.|journal = Proceedings of the National Academy of Sciences|volume = 107|issue = 38|pages = 16420–16427|pmid = 20807744|pmc = 2944720|doi-access = free}}</ref><ref>{{cite journal |doi = 10.1073/pnas.1506034112|title = Networks of energetic and metabolic interactions define dynamics in microbial communities|year = 2015|last1 = Embree|first1 = Mallory|last2 = Liu|first2 = Joanne K.|last3 = Al-Bassam|first3 = Mahmoud M.|last4 = Zengler|first4 = Karsten|journal = Proceedings of the National Academy of Sciences|volume = 112|issue = 50|pages = 15450–15455|pmid = 26621749|pmc = 4687543|bibcode = 2015PNAS..11215450E|doi-access = free}}</ref>生物体通过代谢传递相联系:一个生物的氧化还原产物转移到另一生物。然而,还没有一个复杂的环境被彻底剖析,以解决支撑它们的代谢相互作用网络。这限制了生物地球化学模型捕捉碳和其他养分循环关键方面的能力。<ref>{{cite journal |doi = 10.1016/j.tim.2016.04.006|title = Microbial Metagenomics Reveals Climate-Relevant Subsurface Biogeochemical Processes|year = 2016|last1 = Long|first1 = Philip E.|last2 = Williams|first2 = Kenneth H.|last3 = Hubbard|first3 = Susan S.|last4 = Banfield|first4 = Jillian F.|journal = Trends in Microbiology|volume = 24|issue = 8|pages = 600–610|pmid = 27156744}}</ref>新的方法,如基因组解析宏基因组学,可以在无需实验室分离的情况下为生物体提供一套全面的草图甚至是完整的基因组,<ref name=Hug2015 /><ref>{{cite journal |doi = 10.7717/peerj.1319|title = Anvi'o: An advanced analysis and visualization platform for 'omics data|year = 2015|last1 = Eren|first1 = A. Murat|last2 = Esen|first2 = Özcan C.|last3 = Quince|first3 = Christopher|last4 = Vineis|first4 = Joseph H.|last5 = Morrison|first5 = Hilary G.|last6 = Sogin|first6 = Mitchell L.|last7 = Delmont|first7 = Tom O.|journal = PeerJ|volume = 3|pages = e1319|pmid = 26500826|pmc = 4614810}}</ref><ref>{{cite journal |doi = 10.1038/nmeth.3103|title = Binning metagenomic contigs by coverage and composition|year = 2014|last1 = Alneberg|first1 = Johannes|last2 = Bjarnason|first2 = Brynjar Smári|last3 = De Bruijn|first3 = Ino|last4 = Schirmer|first4 = Melanie|last5 = Quick|first5 = Joshua|last6 = Ijaz|first6 = Umer Z.|last7 = Lahti|first7 = Leo|last8 = Loman|first8 = Nicholas J.|last9 = Andersson|first9 = Anders F.|last10 = Quince|first10 = Christopher|journal = Nature Methods|volume = 11|issue = 11|pages = 1144–1146|pmid = 25218180}}</ref>这种方法或许是理解生物地球化学过程的关键。<ref name=Anantharaman2016>{{cite journal |doi = 10.1038/ncomms13219|title = Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system|year = 2016|last1 = Anantharaman|first1 = Karthik|last2 = Brown|first2 = Christopher T.|last3 = Hug|first3 = Laura A.|last4 = Sharon|first4 = Itai|last5 = Castelle|first5 = Cindy J.|last6 = Probst|first6 = Alexander J.|last7 = Thomas|first7 = Brian C.|last8 = Singh|first8 = Andrea|last9 = Wilkins|first9 = Michael J.|last10 = Karaoz|first10 = Ulas|last11 = Brodie|first11 = Eoin L.|last12 = Williams|first12 = Kenneth H.|last13 = Hubbard|first13 = Susan S.|last14 = Banfield|first14 = Jillian F.|journal = Nature Communications|volume = 7|page = 13219|pmid = 27774985|pmc = 5079060|bibcode = 2016NatCo...713219A}} [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License] .</ref>
+
陆地地下是地球上最大的碳储库,含有14-135Pg的碳和总生物量<ref>{{cite journal |doi = 10.1111/1574-6941.12196|title = Weighing the deep continental biosphere|year = 2014|last1 = McMahon|first1 = Sean|last2 = Parnell|first2 = John|journal = FEMS Microbiology Ecology|volume = 87|issue = 1|pages = 113–120|pmid = 23991863}}</ref>的2-19%。<ref>{{cite journal |doi = 10.1073/pnas.1203849109|title = Global distribution of microbial abundance and biomass in subseafloor sediment|year = 2012|last1 = Kallmeyer|first1 = J.|last2 = Pockalny|first2 = R.|last3 = Adhikari|first3 = R. R.|last4 = Smith|first4 = D. C.|last5 = d'Hondt|first5 = S.|journal = Proceedings of the National Academy of Sciences|volume = 109|issue = 40|pages = 16213–16216|pmid = 22927371|pmc = 3479597|doi-access = free}}</ref>微生物在这种环境下驱动有机和无机化合物的转化,从而控制生物地球化学循环。目前对于地下微生物生态学的了解主要是基于16S核糖体RNA(rRNA)基因序列。最近的估计显示,公共数据库中小于8%的16S rRNA序列来自于地下生物,<ref>{{cite journal |doi = 10.1128/mBio.00201-16|title = Status of the Archaeal and Bacterial Census: An Update|year = 2016|last1 = Schloss|first1 = Patrick D.|last2 = Girard|first2 = Rene A.|last3 = Martin|first3 = Thomas|last4 = Edwards|first4 = Joshua|last5 = Thrash|first5 = J. Cameron|journal = mBio|volume = 7|issue = 3|pmid = 27190214|pmc = 4895100}}</ref>且其中仅一小部分由基因组或分离物表示。因此,关于地下微生物代谢的可靠信息非常少。此外,关于地下生态系统中的生物体是如何在新陈代谢上互相关联的,我们知之甚少。一些基于栽培的同养群落研究<ref>{{cite journal |doi = 10.1093/femsre/fuw019|title = Decoding molecular interactions in microbial communities|year = 2016|last1 = Abreu|first1 = Nicole A.|last2 = Taga|first2 = Michiko E.|journal = FEMS Microbiology Reviews|volume = 40|issue = 5|pages = 648–663|pmid = 27417261|pmc = 5007284}}</ref><ref>{{cite journal |doi = 10.1186/s13040-015-0054-4|title = Interaction networks for identifying coupled molecular processes in microbial communities|year = 2015|last1 = Bosse|first1 = Magnus|last2 = Heuwieser|first2 = Alexander|last3 = Heinzel|first3 = Andreas|last4 = Nancucheo|first4 = Ivan|last5 = Melo Barbosa Dall'Agnol|first5 = Hivana|last6 = Lukas|first6 = Arno|last7 = Tzotzos|first7 = George|last8 = Mayer|first8 = Bernd|journal = BioData Mining|volume = 8|page = 21|pmid = 26180552|pmc = 4502522}}</ref><ref>{{cite journal |doi = 10.1111/j.1574-6941.2011.01237.x|title = Genetic characterization of denitrifier communities with contrasting intrinsic functional traits|year = 2012|last1 = Braker|first1 = Gesche|last2 = Dörsch|first2 = Peter|last3 = Bakken|first3 = Lars R.|journal = FEMS Microbiology Ecology|volume = 79|issue = 2|pages = 542–554|pmid = 22092293}}</ref>和对自然群落的小规模宏基因组学分析表明,<ref name=Hug2015>{{cite journal|doi = 10.1111/1462-2920.12930|title = Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages|year = 2016|last1 = Hug|first1 = Laura A.|last2 = Thomas|first2 = Brian C.|last3 = Sharon|first3 = Itai|last4 = Brown|first4 = Christopher T.|last5 = Sharma|first5 = Ritin|last6 = Hettich|first6 = Robert L.|last7 = Wilkins|first7 = Michael J.|last8 = Williams|first8 = Kenneth H.|last9 = Singh|first9 = Andrea|last10 = Banfield|first10 = Jillian F.|journal = Environmental Microbiology|volume = 18|issue = 1|pages = 159–173|pmid = 26033198|url = https://escholarship.org/uc/item/2f1480x2|access-date = 2021-09-27|archive-date = 2021-09-27|archive-url = https://web.archive.org/web/20210927050621/https://escholarship.org/uc/item/2f1480x2|url-status = live}}</ref><ref>{{cite journal |doi = 10.1073/pnas.1010732107|title = Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea|year = 2010|last1 = McCarren|first1 = J.|last2 = Becker|first2 = J. W.|last3 = Repeta|first3 = D. J.|last4 = Shi|first4 = Y.|last5 = Young|first5 = C. R.|last6 = Malmstrom|first6 = R. R.|last7 = Chisholm|first7 = S. W.|last8 = Delong|first8 = E. F.|journal = Proceedings of the National Academy of Sciences|volume = 107|issue = 38|pages = 16420–16427|pmid = 20807744|pmc = 2944720|doi-access = free}}</ref><ref>{{cite journal |doi = 10.1073/pnas.1506034112|title = Networks of energetic and metabolic interactions define dynamics in microbial communities|year = 2015|last1 = Embree|first1 = Mallory|last2 = Liu|first2 = Joanne K.|last3 = Al-Bassam|first3 = Mahmoud M.|last4 = Zengler|first4 = Karsten|journal = Proceedings of the National Academy of Sciences|volume = 112|issue = 50|pages = 15450–15455|pmid = 26621749|pmc = 4687543|bibcode = 2015PNAS..11215450E|doi-access = free}}</ref>生物体通过代谢传递相联系:一个生物的氧化还原产物转移到另一生物。然而,还没有一个复杂的环境被彻底剖析,以解决支撑它们的代谢相互作用网络。这限制了生物地球化学模型捕捉碳和其他养分循环关键方面的能力。<ref>{{cite journal |doi = 10.1016/j.tim.2016.04.006|title = Microbial Metagenomics Reveals Climate-Relevant Subsurface Biogeochemical Processes|year = 2016|last1 = Long|first1 = Philip E.|last2 = Williams|first2 = Kenneth H.|last3 = Hubbard|first3 = Susan S.|last4 = Banfield|first4 = Jillian F.|journal = Trends in Microbiology|volume = 24|issue = 8|pages = 600–610|pmid = 27156744}}</ref>新的方法,如基因组解析宏基因组学,可以在无需实验室分离的情况下为生物体提供一套全面的草图甚至是完整的基因组,<ref name=Hug2015 /><ref>{{cite journal |doi = 10.7717/peerj.1319|title = Anvi'o: An advanced analysis and visualization platform for 'omics data|year = 2015|last1 = Eren|first1 = A. Murat|last2 = Esen|first2 = Özcan C.|last3 = Quince|first3 = Christopher|last4 = Vineis|first4 = Joseph H.|last5 = Morrison|first5 = Hilary G.|last6 = Sogin|first6 = Mitchell L.|last7 = Delmont|first7 = Tom O.|journal = PeerJ|volume = 3|pages = e1319|pmid = 26500826|pmc = 4614810}}</ref><ref>{{cite journal |doi = 10.1038/nmeth.3103|title = Binning metagenomic contigs by coverage and composition|year = 2014|last1 = Alneberg|first1 = Johannes|last2 = Bjarnason|first2 = Brynjar Smári|last3 = De Bruijn|first3 = Ino|last4 = Schirmer|first4 = Melanie|last5 = Quick|first5 = Joshua|last6 = Ijaz|first6 = Umer Z.|last7 = Lahti|first7 = Leo|last8 = Loman|first8 = Nicholas J.|last9 = Andersson|first9 = Anders F.|last10 = Quince|first10 = Christopher|journal = Nature Methods|volume = 11|issue = 11|pages = 1144–1146|pmid = 25218180}}</ref>这种方法或许是理解生物地球化学过程的关键。<ref name=Anantharaman2016>{{cite journal |doi = 10.1038/ncomms13219|title = Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system|year = 2016|last1 = Anantharaman|first1 = Karthik|last2 = Brown|first2 = Christopher T.|last3 = Hug|first3 = Laura A.|last4 = Sharon|first4 = Itai|last5 = Castelle|first5 = Cindy J.|last6 = Probst|first6 = Alexander J.|last7 = Thomas|first7 = Brian C.|last8 = Singh|first8 = Andrea|last9 = Wilkins|first9 = Michael J.|last10 = Karaoz|first10 = Ulas|last11 = Brodie|first11 = Eoin L.|last12 = Williams|first12 = Kenneth H.|last13 = Hubbard|first13 = Susan S.|last14 = Banfield|first14 = Jillian F.|journal = Nature Communications|volume = 7|page = 13219|pmid = 27774985|pmc = 5079060|bibcode = 2016NatCo...713219A}} Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License] .</ref>
      第156行: 第156行:     
==历史==
 
==历史==
[[File:1934-V I Vernadsky.jpg|thumb|upright=0.9| {{center|[[Vladimir Vernadsky]] 1934<br />father of biogeochemistry{{hsp}}<ref name=Bianchi2021>{{cite journal |doi = 10.1007/s10533-020-00708-0|title = The evolution of biogeochemistry: Revisited|year = 2021|last1 = Bianchi|first1 = Thomas S.|journal = Biogeochemistry|volume = 154|issue = 2|pages = 141–181}} [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>}}]]
+
[[File:1934-V I Vernadsky.jpg|thumb|upright=0.9| {{center|[[Vladimir Vernadsky]] 1934<br />father of biogeochemistry{{hsp}}<ref name=Bianchi2021>{{cite journal |doi = 10.1007/s10533-020-00708-0|title = The evolution of biogeochemistry: Revisited|year = 2021|last1 = Bianchi|first1 = Thomas S.|journal = Biogeochemistry|volume = 154|issue = 2|pages = 141–181}} Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>}}]]
     
7,129

个编辑

导航菜单