第11行: |
第11行: |
| == 基本信息 == | | == 基本信息 == |
| | | |
− | * '''书名''' 因果:模型、推理和推论 Causality: Model, Reasoning, and Inference 2nd edition | + | * '''书名''' 因果论:模型、推理和推断 Causality: Model, Reasoning, and Inference 2nd edition |
| * '''作者''' [https://wiki.swarma.org/index.php/Judea_Pearl 朱迪亚·珀尔 Judea Pearl] | | * '''作者''' [https://wiki.swarma.org/index.php/Judea_Pearl 朱迪亚·珀尔 Judea Pearl] |
| * '''出版社''' 剑桥大学出版社 | | * '''出版社''' 剑桥大学出版社 |
第27行: |
第27行: |
| * 与断言逻辑相比,基于概率的表达更容易处理,不然断言需要考虑到大量使其不成立的特例。 | | * 与断言逻辑相比,基于概率的表达更容易处理,不然断言需要考虑到大量使其不成立的特例。 |
| | | |
− | 1.1.2 概率论中的基本概念 Basic Concepts in Probability Theory 2 | + | 1.1.2 概率论的基本概念 Basic Concepts in Probability Theory 2 |
| | | |
| * 介绍有关概率论中离散变量的相关基础知识,并主要聚焦于贝叶斯推理。 | | * 介绍有关概率论中离散变量的相关基础知识,并主要聚焦于贝叶斯推理。 |
第67行: |
第67行: |
| * 因果贝叶斯网络的定义和两个性质 | | * 因果贝叶斯网络的定义和两个性质 |
| | | |
− | 1.3.2 因果关系和它们的稳定性 Causal Relationships and Their Stability 24 | + | 1.3.2 因果关系及其稳定性 Causal Relationships and Their Stability 24 |
| | | |
| * 说明了因果关系为何比概率关系稳定,因果关系的重要性。 | | * 说明了因果关系为何比概率关系稳定,因果关系的重要性。 |
第92行: |
第92行: |
| * 对比了统计学与因果科学术语的差异 | | * 对比了统计学与因果科学术语的差异 |
| | | |
− | === 2 推断因果理论 A Theory of Inferred Causation 41 === | + | === 2 因果推断理论 A Theory of Inferred Causation 41 === |
− | '''2.1 绪论—直观的理解 Introduction – The Basic Intuitions 42''' | + | '''2.1 绪论:直观的理解 Introduction – The Basic Intuitions 42''' |
| | | |
| '''2.2 因果发现框架 The Causal Discovery Framework 43''' | | '''2.2 因果发现框架 The Causal Discovery Framework 43''' |
第106行: |
第106行: |
| '''2.4 稳定分布 Stable Distributions 48''' | | '''2.4 稳定分布 Stable Distributions 48''' |
| | | |
− | * 为什么需要提出稳定性这个概念。最小性原则不能保证模型是最小的或是计算可行的【看着有点怪,具体最小是什么意思我也不是非常懂,这句话的意思出自这里Although the minimality principle is sufficient for forming a normative theory of inferred causation, it does not guarantee that the structure of the actual data-generating model would be minimal, or that the search through the vast space of minimal structures would be computationally practical】 | + | * 为什么需要提出稳定性这个概念。最小性原则不能保证模型是最小的或是计算可行的【看着有点怪,具体最小是什么意思我也不是非常懂,这句话的意思出自这里Although the minimality principle is sufficient for forming a normative theory of inferred causation, it does not guarantee that the structure of the actual data-generating model would be minimal, or that the search through the vast space of minimal structures would be computationally practical】 |
| * 介绍稳定性的定义,阐释其与最小性间的关系 | | * 介绍稳定性的定义,阐释其与最小性间的关系 |
| | | |
第121行: |
第121行: |
| * 潜在因果,真实因果,伪相关,有时间信息的真实因果,有时间信息的伪相关这些概念的定义 | | * 潜在因果,真实因果,伪相关,有时间信息的真实因果,有时间信息的伪相关这些概念的定义 |
| | | |
− | '''2.8 Nontemporal Causation and Statistical Time 57''' | + | '''2.8 非时间因果与统计时间 Nontemporal Causation and Statistical Time 57''' |
| | | |
| * | | * |
第127行: |
第127行: |
| '''2.9 总结 Conclusions 59''' | | '''2.9 总结 Conclusions 59''' |
| | | |
− | 2.9.1 On Minimality, Markov, and Stability 61 | + | 2.9.1 关于极小性,马尔可夫性和稳定性 On Minimality, Markov, and Stability 61 |
| | | |
− | === 3 Causal Diagrams and the Identification of Causal Effects 65 === | + | === 3 因果图和识别因果效应 Causal Diagrams and the Identification of Causal Effects 65 === |
− | '''3.1 Introduction 66''' | + | '''3.1 简介 Introduction 66''' |
| | | |
− | '''3.2 Intervention in Markovian Models 68''' | + | '''3.2 马尔可夫模型中的干预 Intervention in Markovian Models 68''' |
| | | |
− | 3.2.1 Graphs as Models of Interventions 68 | + | 3.2.1 作为干预模型的图 Graphs as Models of Interventions 68 |
| | | |
− | 3.2.2 Interventions as Variables 70 | + | 3.2.2 作为干预的变量 Interventions as Variables 70 |
| | | |
− | 3.2.3 Computing the Effect of Interventions 72 | + | 3.2.3 计算干预的效应 Computing the Effect of Interventions 72 |
| | | |
− | 3.2.4 Identification of Causal Quantities 77 | + | 3.2.4 识别因果量值 Identification of Causal Quantities 77 |
| | | |
− | '''3.3 Controlling Confounding Bias 78''' | + | '''3.3 控制混杂偏差 Controlling Confounding Bias 78''' |
| | | |
− | 3.3.1 The Back-Door Criterion 79 | + | 3.3.1 后门准则 The Back-Door Criterion 79 |
| | | |
− | 3.3.2 The Front-Door Criterion 81 | + | 3.3.2 前门准则 The Front-Door Criterion 81 |
| | | |
− | 3.3.3 Example: Smoking and the Genotype Theory 83 | + | 3.3.3 例子:吸烟和基因论 Example: Smoking and the Genotype Theory 83 |
| | | |
− | '''3.4 A Calculus of Intervention 85''' | + | '''3.4 计算干预 A Calculus of Intervention 85''' |
| | | |
− | 3.4.1 Preliminary Notation 85 | + | 3.4.1 记号预备 Preliminary Notation 85 |
| | | |
− | 3.4.2 Inference Rules 85 | + | 3.4.2 推理规则 Inference Rules 85 |
| | | |
− | 3.4.3 Symbolic Derivation of Causal Effects: An Example 86 | + | 3.4.3 例子:因果效应的符号推导 Symbolic Derivation of Causal Effects: An Example 86 |
| | | |
− | 3.4.4 Causal Inference by Surrogate Experiments 88 | + | 3.4.4 替代试验的因果推断 Causal Inference by Surrogate Experiments 88 |
| | | |
− | '''3.5 Graphical Tests of Identifiability 89'''
| + | * 由于一些原因如成本或伦理问题,不能控制某变量进行实验,于是需要控制另一个可替代的变量 |
| + | * 介绍利用替代变量进行因果效应的计算方法 |
| | | |
− | 3.5.1 Identifying Models 91 | + | '''3.5 可识别性的图测试 Graphical Tests of Identifiability 89''' |
| | | |
− | 3.5.2 Nonidentifying Models 93 | + | 3.5.1 可识别模型 Identifying Models 91 |
| | | |
− | '''3.6 Discussion 94'''
| + | 3.5.2 不可识别模型 Nonidentifying Models 93 |
| | | |
− | 3.6.1 Qualifications and Extensions 94 | + | '''3.6 讨论 Discussion 94''' |
| | | |
− | 3.6.2 Diagrams as a Mathematical Language 96 | + | 3.6.1 要求与扩展 Qualifications and Extensions 94 |
| | | |
− | 3.6.3 Translation from Graphs to Potential Outcomes 98 | + | 3.6.2 作为数学语言的图 Diagrams as a Mathematical Language 96 |
| | | |
− | 3.6.4 Relations to Robins’s G-Estimation 102 | + | 3.6.3 从图到潜在因果的转换 Translation from Graphs to Potential Outcomes 98 |
| | | |
− | === 4 Actions, Plans, and Direct Effects 107 ===
| + | 3.6.4 跟Robin的G-估计的关系 Relations to Robins's G-Estimation 102 |
− | '''4.1 Introduction 108'''
| |
| | | |
− | 4.1.1 Actions, Acts, and Probabilities 108 | + | === 4 行动,计划和直接效应 Actions, Plans, and Direct Effects 107 === |
| + | '''4.1 简介 Introduction 108''' |
| | | |
− | 4.1.2 Actions in Decision Analysis 110 | + | 4.1.1 行动,动作和概率 Actions, Acts, and Probabilities 108 |
| | | |
− | 4.1.3 Actions and Counterfactuals 112 | + | 4.1.2 决策分析中的行动 Actions in Decision Analysis 110 |
| | | |
− | '''4.2 Conditional Actions and Stochastic Policies 113'''
| + | 4.1.3 行动和反事实 Actions and Counterfactuals 112 |
| | | |
− | '''4.3 When Is the Effect of an Action Identifiable? 114''' | + | '''4.2 有条件行动和随机策略 Conditional Actions and Stochastic Policies 113''' |
| | | |
− | 4.3.1 Graphical Conditions for Identification 114 | + | '''4.3 什么时候行动的结果是可测量的 When Is the Effect of an Action Identifiable? 114''' |
| | | |
− | 4.3.2 Remarks on Efficiency 116 | + | 4.3.1 基于图的识别条件 Graphical Conditions for Identification 114 |
| | | |
− | 4.3.3 Deriving a Closed-Form Expression for Control Queries 117 | + | 4.3.2 识别效率 Remarks on Efficiency 116 |
| | | |
− | 4.3.4 Summary 118 | + | 4.3.3 对控制问题解析解的推到 Deriving a Closed-Form Expression for Control Queries 117 |
| | | |
− | '''4.4 The Identification of Dynamic Plans 118'''
| + | 4.3.4 总结 Summary 118 |
| | | |
− | 4.4.1 Motivation 118 | + | '''4.4 动态计划的识别 The Identification of Dynamic Plans 118''' |
| | | |
− | 4.4.2 Plan Identification: Notation and Assumptions 120 | + | 4.4.1 动机 Motivation 118 |
| | | |
− | 4.4.3 Plan Identification: The Sequential Back-Door Criterion 121 | + | 4.4.2 识别计划:记号和假设 Plan Identification: Notation and Assumptions 120 |
| | | |
− | 4.4.4 Plan Identification: A Procedure 124 | + | 4.4.3 识别计划:顺序后门准则 Plan Identification: The Sequential Back-Door Criterion 121 |
| | | |
− | '''4.5 Direct and Indirect Effects 126'''
| + | 4.4.4 识别计划:流程 Plan Identification: A Procedure 124 |
| | | |
− | 4.5.1 Direct versus Total Effects 126 | + | '''4.5 直接和间接效应 Direct and Indirect Effects 126''' |
| | | |
− | 4.5.2 Direct Effects, Definition, and Identification 127 | + | 4.5.1 直接效应和总效应 Direct versus Total Effects 126 |
| | | |
− | 4.5.3 Example: Sex Discrimination in College Admission 128 | + | 4.5.2 直接效益,定义和识别 Direct Effects, Definition, and Identification 127 |
| | | |
− | 4.5.4 Natural Direct Effects 130 | + | 4.5.3 例子:大学录取中的性别歧视 Example: Sex Discrimination in College Admission 128 |
| | | |
− | 4.5.5 Indirect Effects and the Mediation Formula 132 | + | 4.5.4 自然直接效应 Natural Direct Effects 130 |
| | | |
− | === 5 Causality and Structural Models in Social Science and Economics 133 ===
| + | 4.5.5 间接效应和中介公式 Indirect Effects and the Mediation Formula 132 |
− | '''5.1 Introduction 134'''
| |
| | | |
− | 5.1.1 Causality in Search of a Language 134 | + | === 5 社会学和经济学中的因果关系和结构模型 Causality and Structural Models in Social Science and Economics 133 === |
| + | '''5.1 简介 Introduction 134''' |
| | | |
− | 5.1.2 SEM: How Its Meaning Became Obscured 135 | + | 5.1.1 寻找因果语言 Causality in Search of a Language 134 |
| | | |
− | 5.1.3 Graphs as a Mathematical Language 138 | + | 5.1.2 SEM:意思是怎么变模糊的 SEM: How Its Meaning Became Obscured 135 |
| | | |
− | '''5.2 Graphs and Model Testing 140'''
| + | 5.1.3 作为数学语言的图 Graphs as a Mathematical Language 138 |
| | | |
− | 5.2.1 The Testable Implications of Structural Models 140 | + | '''5.2 图和模型测试 Graphs and Model Testing 140''' |
| | | |
− | 5.2.2 Testing the Testable 144 | + | 5.2.1 结构模型的可检验含义 The Testable Implications of Structural Models 140 |
| | | |
− | 5.2.3 Model Equivalence 145 | + | 5.2.2 检验和可检验性 Testing the Testable 144 |
| | | |
− | '''5.3 Graphs and Identifiability 149'''
| + | 5.2.3 模型等价 Model Equivalence 145 |
| | | |
− | 5.3.1 Parameter Identification in Linear Models 149 | + | '''5.3 图和可识别性 Graphs and Identifiability 149''' |
| | | |
− | 5.3.2 Comparison to Nonparametric Identification 154 | + | 5.3.1 线性模型的参数识别 Parameter Identification in Linear Models 149 |
| | | |
− | 5.3.3 Causal Effects: The Interventional Interpretation of Structural Equation Models 157 | + | 5.3.2 对比非参数识别 Comparison to Nonparametric Identification 154 |
| | | |
− | '''5.4 Some Conceptual Underpinnings 159'''
| + | 5.3.3 因果效应:结构等式模型的干预解释 Causal Effects: The Interventional Interpretation of Structural Equation Models 157 |
| | | |
− | 5.4.1 What Do Structural Parameters Really Mean? 159 | + | '''5.4 部分基础概念 Some Conceptual Underpinnings 159''' |
| | | |
− | 5.4.2 Interpretation of Effect Decomposition 163 | + | 5.4.1 结构参数的真正含义是什么? What Do Structural Parameters Really Mean? 159 |
| | | |
− | 5.4.3 Exogeneity, Superexogeneity, and Other Frills 165 | + | 5.4.2 效应分解的解释 Interpretation of Effect Decomposition 163 |
| | | |
− | '''5.5 Conclusion 170'''
| + | 5.4.3 外生性,超外生性和其他 Exogeneity, Superexogeneity, and Other Frills 165 |
| | | |
− | '''5.6 Postscript for the Second Edition 171''' | + | '''5.5 结论 Conclusion 170''' |
| | | |
− | 5.6.1 An Econometric Awakening? 171 | + | '''5.6 第二版附言 Postscript for the Second Edition 171''' |
| | | |
− | 5.6.2 Identification in Linear Models 171 | + | 5.6.1 计量经济学的觉醒 An Econometric Awakening? 171 |
| | | |
− | 5.6.3 Robustness of Causal Claims 172 | + | 5.6.2 线性模型的识别问题 Identification in Linear Models 171 |
| | | |
− | === 6 Simpson’s Paradox, Confounding, and Collapsibility 173 === | + | 5.6.3 因果论断的鲁棒性 Robustness of Causal Claims 172 |
− | '''6.1 Simpson’s Paradox: An Anatomy 174''' | + | |
| + | === 6 Simpson's Paradox, Confounding, and Collapsibility 173 === |
| + | '''6.1 Simpson's Paradox: An Anatomy 174''' |
| | | |
| 6.1.1 A Tale of a Non-Paradox 174 | | 6.1.1 A Tale of a Non-Paradox 174 |
第277行: |
第280行: |
| 6.2.1 Introduction 182 | | 6.2.1 Introduction 182 |
| | | |
− | 6.2.2 Causal and Associational Definitions 184 | + | 6.2.2 Causal and Associational Definitions 184 |
| | | |
| '''6.3 How the Associational Criterion Fails 185''' | | '''6.3 How the Associational Criterion Fails 185''' |
| | | |
− | 6.3.1 Failing Sufficiency via Marginality 185 | + | 6.3.1 Failing Sufficiency via Marginality 185 |
| | | |
− | 6.3.2 Failing Sufficiency via Closed-World Assumptions 186 | + | 6.3.2 Failing Sufficiency via Closed-World Assumptions 186 |
| | | |
| 6.3.3 Failing Necessity via Barren Proxies 186 | | 6.3.3 Failing Necessity via Barren Proxies 186 |
第293行: |
第296行: |
| 6.4.1 Motivation 189 | | 6.4.1 Motivation 189 |
| | | |
− | 6.4.2 Formal Definitions 191 | + | 6.4.2 Formal Definitions 191 |
| | | |
| 6.4.3 Operational Test for Stable No-Confounding 192 | | 6.4.3 Operational Test for Stable No-Confounding 192 |
第310行: |
第313行: |
| '''7.1 Structural Model Semantics 202''' | | '''7.1 Structural Model Semantics 202''' |
| | | |
− | 7.1.1 Definitions: Causal Models, Actions, and Counterfactuals 202 | + | 7.1.1 Definitions: Causal Models, Actions, and Counterfactuals 202 |
| | | |
| 7.1.2 Evaluating Counterfactuals: Deterministic Analysis 207 | | 7.1.2 Evaluating Counterfactuals: Deterministic Analysis 207 |
第348行: |
第351行: |
| 7.4.4 Relations to the Neyman–Rubin Framework 243 | | 7.4.4 Relations to the Neyman–Rubin Framework 243 |
| | | |
− | 7.4.5 Exogeneity and Instruments: Counterfactual and Graphical Definitions 245 | + | 7.4.5 Exogeneity and Instruments: Counterfactual and Graphical Definitions 245 |
| | | |
| '''7.5 Structural versus Probabilistic Causality 249''' | | '''7.5 Structural versus Probabilistic Causality 249''' |
第399行: |
第402行: |
| '''8.6 Conclusion 281''' | | '''8.6 Conclusion 281''' |
| | | |
− | === 9 Probability of Causation: Interpretation and Identification 283 === | + | === 9 Probability of Causation: Interpretation and Identification 283 === |
| '''9.1 Introduction 283''' | | '''9.1 Introduction 283''' |
| | | |
− | '''9.2 Necessary and Sufficient Causes: Conditions of Identification 286''' | + | '''9.2 Necessary and Sufficient Causes: Conditions of Identification 286''' |
| | | |
− | 9.2.1 Definitions, Notation, and Basic Relationships 286 | + | 9.2.1 Definitions, Notation, and Basic Relationships 286 |
| | | |
| 9.2.2 Bounds and Basic Relationships under Exogeneity 289 | | 9.2.2 Bounds and Basic Relationships under Exogeneity 289 |
| | | |
− | 9.2.3 Identifiability under Monotonicity and Exogeneity 291 | + | 9.2.3 Identifiability under Monotonicity and Exogeneity 291 |
| | | |
− | 9.2.4 Identifiability under Monotonicity and Nonexogeneity 293 | + | 9.2.4 Identifiability under Monotonicity and Nonexogeneity 293 |
| | | |
| '''9.3 Examples and Applications 296''' | | '''9.3 Examples and Applications 296''' |
第424行: |
第427行: |
| 9.3.5 Summary of Results 303 | | 9.3.5 Summary of Results 303 |
| | | |
− | '''9.4 Identification in Nonmonotonic Models 304''' | + | '''9.4 Identification in Nonmonotonic Models 304''' |
| | | |
| '''9.5 Conclusions 307''' | | '''9.5 Conclusions 307''' |
| | | |
| === 10 The Actual Cause 309 === | | === 10 The Actual Cause 309 === |
− | '''10.1 Introduction: The Insufficiency of Necessary Causation 309''' | + | '''10.1 Introduction: The Insufficiency of Necessary Causation 309''' |
| | | |
| 10.1.1 Singular Causes Revisited 309 | | 10.1.1 Singular Causes Revisited 309 |
第443行: |
第446行: |
| '''10.3 Causal Beams and Sustenance-Based Causation 318''' | | '''10.3 Causal Beams and Sustenance-Based Causation 318''' |
| | | |
− | 10.3.1 Causal Beams: Definitions and Implications 318 | + | 10.3.1 Causal Beams: Definitions and Implications 318 |
| | | |
| 10.3.2 Examples: From Disjunction to General Formulas 320 | | 10.3.2 Examples: From Disjunction to General Formulas 320 |
第498行: |
第501行: |
| '''11.5 Causal Analysis in Linear Structural Models 366''' | | '''11.5 Causal Analysis in Linear Structural Models 366''' |
| | | |
− | 11.5.1 General Criterion for Parameter Identification (Chapter 5, pp. 149–54) 366 | + | 11.5.1 General Criterion for Parameter Identification (Chapter 5, pp. 149–54) 366 |
| | | |
− | 11.5.2 The Causal Interpretation of Structural Coefficients 366 | + | 11.5.2 The Causal Interpretation of Structural Coefficients 366 |
| | | |
| 11.5.3 Defending the Causal Interpretation of SEM (or, SEM Survival Kit) 368 | | 11.5.3 Defending the Causal Interpretation of SEM (or, SEM Survival Kit) 368 |
第512行: |
第515行: |
| 11.6.1 Simpson's Paradox and Decision Trees 380 | | 11.6.1 Simpson's Paradox and Decision Trees 380 |
| | | |
− | 11.6.2 Is Chronological Information Sufficient for Decision Trees? 382 | + | 11.6.2 Is Chronological Information Sufficient for Decision Trees? 382 |
| | | |
| 11.6.3 Lindley on Causality, Decision Trees, and Bayesianism 384 | | 11.6.3 Lindley on Causality, Decision Trees, and Bayesianism 384 |