第493行: |
第493行: |
| 11.4.4 do(x)算子是通用的吗? Is the do(x) Operator Universal? 359 | | 11.4.4 do(x)算子是通用的吗? Is the do(x) Operator Universal? 359 |
| | | |
− | 11.4.5 Causation without Manipulation!!! 361 | + | 11.4.5 没有操作的因果关系! Causation without Manipulation!!! 361 |
| | | |
− | 11.4.6 Hunting Causes with Cartwright 362 | + | 11.4.6 与卡特赖特一起追寻原因 Hunting Causes with Cartwright 362 |
| | | |
− | 11.4.7 The Illusion of Nonmodularity 364 | + | 11.4.7 非模块化的错觉 The Illusion of Nonmodularity 364 |
| | | |
− | '''11.5 Causal Analysis in Linear Structural Models 366''' | + | '''11.5 线性结构模型中的因果分析 Causal Analysis in Linear Structural Models 366''' |
| | | |
− | 11.5.1 General Criterion for Parameter Identification (Chapter 5, pp. 149–54) 366 | + | 11.5.1 参数识别的通用准则(第五章) General Criterion for Parameter Identification (Chapter 5, pp. 149–54) 366 |
| | | |
− | 11.5.2 The Causal Interpretation of Structural Coefficients 366 | + | 11.5.2 结构系数的因果解释 The Causal Interpretation of Structural Coefficients 366 |
| | | |
− | 11.5.3 Defending the Causal Interpretation of SEM (or, SEM Survival Kit) 368 | + | 11.5.3 为SEM(或者SEM急救包)的因果解释辩护 Defending the Causal Interpretation of SEM (or, SEM Survival Kit) 368 |
| | | |
− | 11.5.4 Where Is Economic Modeling Today? – Courting Causes with Heckman 374 | + | 11.5.4 今天的经济模型在哪?-与赫克曼一起追寻原因 Where Is Economic Modeling Today? – Courting Causes with Heckman 374 |
| | | |
− | 11.5.5 External Variation versus Surgery 376 | + | 11.5.5 外部变化与外科手术 External Variation versus Surgery 376 |
| | | |
− | '''11.6 Decisions and Confounding (Chapter 6) 380''' | + | '''11.6 决策与混杂(第六章) Decisions and Confounding (Chapter 6) 380''' |
| | | |
− | 11.6.1 Simpson's Paradox and Decision Trees 380 | + | 11.6.1 辛普森悖论和决策树 Simpson's Paradox and Decision Trees 380 |
| | | |
− | 11.6.2 Is Chronological Information Sufficient for Decision Trees? 382 | + | 11.6.2 时序信息对决策树来说是否充分? Is Chronological Information Sufficient for Decision Trees? 382 |
| | | |
− | 11.6.3 Lindley on Causality, Decision Trees, and Bayesianism 384 | + | 11.6.3 林德利关于因果性,决策树和贝叶斯主义的理解 Lindley on Causality, Decision Trees, and Bayesianism 384 |
| | | |
− | 11.6.4 Why Isn't Confounding a Statistical Concept? 387 | + | 11.6.4 为什么混杂不是统计学的概念? Why Isn't Confounding a Statistical Concept? 387 |
| | | |
− | '''11.7 The Calculus of Counterfactuals 389''' | + | '''11.7 计算反事实 The Calculus of Counterfactuals 389''' |
| | | |
− | 11.7.1 Counterfactuals in Linear Systems 389 | + | 11.7.1 线性系统中的反事实 Counterfactuals in Linear Systems 389 |
| | | |
− | 11.7.2 The Meaning of Counterfactuals 391 | + | 11.7.2 反事实的意义 The Meaning of Counterfactuals 391 |
| | | |
− | 11.7.3 d-Separation of Counterfactuals 393 | + | 11.7.3 反事实中的d-分离 d-Separation of Counterfactuals 393 |
| | | |
− | '''11.8 Instrumental Variables and Noncompliance 395''' | + | '''11.8 工具变量和不依从性 Instrumental Variables and Noncompliance 395''' |
| | | |
− | 11.8.1 Tight Bounds under Noncompliance 395 | + | 11.8.1 不依从性下的紧边界 Tight Bounds under Noncompliance 395 |
| | | |
− | '''11.9 More on Probabilities of Causation 396''' | + | '''11.9 更多关于因果的概率 More on Probabilities of Causation 396''' |
| | | |
− | 11.9.1 Is "Guilty with Probability One" Ever Possible? 396 | + | 11.9.1 “有罪的概率为1”还有可能吗? Is "Guilty with Probability One" Ever Possible? 396 |
| | | |
− | 11.9.2 Tightening the Bounds on Probabilities of Causation 398 | + | 11.9.2 收紧因果概率的边界 Tightening the Bounds on Probabilities of Causation 398 |