更改

跳到导航 跳到搜索
删除8,802字节 、 2022年4月23日 (六) 15:45
无编辑摘要
第1行: 第1行: −
此词条暂由彩云小译翻译,翻译字数共492,未经人工整理和审校,带来阅读不便,请见谅。
+
{{#seo:
 +
|keywords=统计方法,合成对照,双重差分方法
 +
|description=在比较案例研究中用于评估干预措施的效果
 +
}}
   −
The '''synthetic control method''' is a statistical method used to evaluate the effect of an intervention in [[comparative case study|comparative case studies]]. It involves the construction of a weighted combination of groups used as controls, to which the [[treatment group]] is compared.<ref>{{Cite journal|last=Abadie|first=Alberto|date=2021|title=Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects|url=https://www.aeaweb.org/articles?id=10.1257/jel.20191450|journal=Journal of Economic Literature|language=en|volume=59|issue=2|pages=391–425|doi=10.1257/jel.20191450|issn=0022-0515|doi-access=free}}</ref> This comparison is used to estimate what would have happened to the treatment group if it had not received the treatment.
+
'''合成对照 synthetic control method'''是一种统计方法,在比较案例研究中用于评估干预措施的效果。它使用多组数据的加权组合来构建对照组,使之与治疗组进行比较。<ref>{{Cite journal|last=Abadie|first=Alberto|date=2021|title=Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects|url=https://www.aeaweb.org/articles?id=10.1257/jel.20191450|journal=Journal of Economic Literature|language=en|volume=59|issue=2|pages=391–425|doi=10.1257/jel.20191450|issn=0022-0515|doi-access=free}}</ref>基于这种比较,可用来估计在干预之后的时间里,假如没有对治疗组进行干预的情况下治疗组将如何发展。
Unlike [[difference in differences]] approaches, this method can account for the effects of [[confounder]]s changing over time, by weighting the control group to better match the treatment group before the intervention.<ref name=he>{{cite journal|last1=Kreif|first1=Noémi|last2=Grieve|first2=Richard|last3=Hangartner|first3=Dominik|last4=Turner|first4=Alex James|last5=Nikolova|first5=Silviya|last6=Sutton|first6=Matt|title=Examination of the Synthetic Control Method for Evaluating Health Policies with Multiple Treated Units|journal=Health Economics|date=December 2016|volume=25|issue=12|pages=1514–1528|doi=10.1002/hec.3258|pmid=26443693|pmc=5111584}}</ref> Another advantage of the synthetic control method is that it allows researchers to systematically select comparison groups.<ref name=ajps>{{cite journal|last1=Abadie|first1=Alberto|authorlink1=Alberto Abadie|last2=Diamond|first2=Alexis|last3=Hainmueller|first3=Jens|title=Comparative Politics and the Synthetic Control Method|journal=American Journal of Political Science|date=February 2015|volume=59|issue=2|pages=495–510|doi=10.1111/ajps.12116}}</ref> It has been applied to the fields of [[political science]],<ref name=ajps/> [[health policy]],<ref name=he/> [[criminology]],<ref>{{cite journal|last1=Saunders|first1=Jessica|last2=Lundberg|first2=Russell|last3=Braga|first3=Anthony A.|last4=Ridgeway|first4=Greg|last5=Miles|first5=Jeremy|title=A Synthetic Control Approach to Evaluating Place-Based Crime Interventions|journal=Journal of Quantitative Criminology|date=3 June 2014|volume=31|issue=3|pages=413–434|doi=10.1007/s10940-014-9226-5}}</ref> and [[economics]].<ref>{{cite journal|last1=Billmeier|first1=Andreas|last2=Nannicini|first2=Tommaso|title=Assessing Economic Liberalization Episodes: A Synthetic Control Approach|journal=Review of Economics and Statistics|date=July 2013|volume=95|issue=3|pages=983–1001|doi=10.1162/REST_a_00324}}</ref>
     −
The synthetic control method is a statistical method used to evaluate the effect of an intervention in comparative case studies. It involves the construction of a weighted combination of groups used as controls, to which the treatment group is compared. This comparison is used to estimate what would have happened to the treatment group if it had not received the treatment.
  −
Unlike difference in differences approaches, this method can account for the effects of confounders changing over time, by weighting the control group to better match the treatment group before the intervention. Another advantage of the synthetic control method is that it allows researchers to systematically select comparison groups. It has been applied to the fields of political science, health policy, criminology, and economics.
     −
【翻译】合成对照是一种统计方法,在比较案例研究中用于评估干预措施的效果。它使用多组数据的加权组合来构建对照组,使之与治疗组进行比较。基于这种比较,可用来估计在干预之后的时间里,假如没有对治疗组进行干预的情况下治疗组将如何发展。与双重差分方法(Difference in difference)不同,这种方法可以考虑混杂因素随时间变化的影响,通过调整对照组的加权组合,可以对干预之前的治疗组数据做更好的匹配。合成对照还有个优点是,它允许研究人员在多组候选数据中做系统性选择。它已应用于政治学、卫生政策、犯罪学和经济学等多个领域。
+
与双重差分方法 Difference in difference不同,这种方法可以考虑混杂因素随时间变化的影响,通过调整对照组的加权组合,可以对干预之前的治疗组数据做更好的匹配。<ref name=he>{{cite journal|last1=Kreif|first1=Noémi|last2=Grieve|first2=Richard|last3=Hangartner|first3=Dominik|last4=Turner|first4=Alex James|last5=Nikolova|first5=Silviya|last6=Sutton|first6=Matt|title=Examination of the Synthetic Control Method for Evaluating Health Policies with Multiple Treated Units|journal=Health Economics|date=December 2016|volume=25|issue=12|pages=1514–1528|doi=10.1002/hec.3258|pmid=26443693|pmc=5111584}}</ref>合成对照还有个优点是,它允许研究人员在多组候选数据中做系统性选择。<ref name=ajps>{{cite journal|last1=Abadie|first1=Alberto|authorlink1=Alberto Abadie|last2=Diamond|first2=Alexis|last3=Hainmueller|first3=Jens|title=Comparative Politics and the Synthetic Control Method|journal=American Journal of Political Science|date=February 2015|volume=59|issue=2|pages=495–510|doi=10.1111/ajps.12116}}</ref>它已应用于政治学<ref name=ajps/>、卫生政策<ref name=he/>、犯罪学<ref>{{cite journal|last1=Saunders|first1=Jessica|last2=Lundberg|first2=Russell|last3=Braga|first3=Anthony A.|last4=Ridgeway|first4=Greg|last5=Miles|first5=Jeremy|title=A Synthetic Control Approach to Evaluating Place-Based Crime Interventions|journal=Journal of Quantitative Criminology|date=3 June 2014|volume=31|issue=3|pages=413–434|doi=10.1007/s10940-014-9226-5}}</ref>和经济学等多个领域。<ref>{{cite journal|last1=Billmeier|first1=Andreas|last2=Nannicini|first2=Tommaso|title=Assessing Economic Liberalization Episodes: A Synthetic Control Approach|journal=Review of Economics and Statistics|date=July 2013|volume=95|issue=3|pages=983–1001|doi=10.1162/REST_a_00324}}</ref>
   −
The synthetic control method combines elements from [[Matching (statistics)|matching]] and [[difference-in-differences]] techniques. Difference-in-differences methods are often-used policy evaluation tools that estimate the effect of an intervention at an aggregate level (e.g. state, country, age group etc.) by averaging over a set of unaffected units. Famous examples include studies of the employment effects of a raise in the [[Minimum wage in the United States|minimum wage]] in New Jersey fast food restaurants by comparing them to fast food restaurants just across the border in [[Philadelphia]] that were unaffected by a minimum wage raise,<ref name="CardKrueger">{{cite journal |last=Card |first=D. |authorlink=David Card |first2=A. |last2=Krueger |authorlink2=Alan Krueger |year=1994 |title=Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania |journal=[[American Economic Review]] |volume=84 |issue=4 |pages=772–793 |jstor=2118030 }}</ref> and studies that look at [[crime rates]] in southern cities to evaluate the impact of the [[Mariel boat lift]] on crime.<ref>{{cite journal |last=Card |first=D. |year=1990 |title=The Impact of the Mariel Boatlift on the Miami Labor Market |journal=[[Industrial and Labor Relations Review]] |volume=43 |issue=2 |pages=245–257 |doi=10.1177/001979399004300205 |url=http://arks.princeton.edu/ark:/88435/dsp016h440s46f }}</ref>  The control group in this specific scenario can be interpreted as a [[Weighted arithmetic mean|weighted average]], where some units effectively receive zero weight while others get an equal, non-zero weight.
     −
The synthetic control method combines elements from matching and difference-in-differences techniques. Difference-in-differences methods are often-used policy evaluation tools that estimate the effect of an intervention at an aggregate level (e.g. state, country, age group etc.) by averaging over a set of unaffected units. Famous examples include studies of the employment effects of a raise in the minimum wage in New Jersey fast food restaurants by comparing them to fast food restaurants just across the border in Philadelphia that were unaffected by a minimum wage raise, and studies that look at crime rates in southern cities to evaluate the impact of the Mariel boat lift on crime. The control group in this specific scenario can be interpreted as a weighted average, where some units effectively receive zero weight while others get an equal, non-zero weight.
+
合成对照方法结合了匹配方法和双重差分方法的技术要素。双重差分法也是一种常用的政策评估工具,通过比较被干预单元和未被干预单元在总体水平上(例如:州、国家、年龄组别等)的均值差异来评估政策干预效果。著名的案例包括新泽西州快餐店提高最低工资政策对就业影响的研究,<ref name="CardKrueger">{{cite journal |last=Card |first=D. |authorlink=David Card |first2=A. |last2=Krueger |authorlink2=Alan Krueger |year=1994 |title=Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania |journal=[[American Economic Review]] |volume=84 |issue=4 |pages=772–793 |jstor=2118030 }}</ref>比较对象是在新泽西州边界另一侧,费城那边那些没受到该政策影响的快餐店;还有通过研究南部城市的犯罪率来评估马里埃尔移民潮如何影响犯罪的案例。<ref>{{cite journal |last=Card |first=D. |year=1990 |title=The Impact of the Mariel Boatlift on the Miami Labor Market |journal=[[Industrial and Labor Relations Review]] |volume=43 |issue=2 |pages=245–257 |doi=10.1177/001979399004300205 |url=http://arks.princeton.edu/ark:/88435/dsp016h440s46f }}</ref>在双重差分场景中,合成对照的控制组可被理解为一个加权平均,其中的一些单元相当于得到了零权重,而另外的一些单元则得到了非零权重(每个单元内的数据共享同一权重值)。
   −
综合控制方法结合了匹配技术和差中差技术的要素。差异中的差异法是一种常用的政策评估工具,用于在总体水平上评估干预措施的效果(例如:。州、国家、年龄组别等)平均超过一组未受影响的单位。著名的例子包括新泽西州快餐店提高最低工资对就业影响的研究,比较对象是紧邻州边境的费城,那边的快餐店没有受到提高最低工资的影响,以及研究南部城市的犯罪率来评估马里埃尔船只提升对犯罪率的影响。在这个特定的场景中,控制组可以被解释为一个加权平均数,其中一些单位实际上得到了零重量,而其他单位得到了相等的,非零重量。
     −
【翻译】合成对照方法结合了匹配方法和双重差分方法的技术要素。双重差分法也是一种常用的政策评估工具,通过比较被干预单元和未被干预单元在总体水平上(例如:州、国家、年龄组别等)的均值差异来评估政策干预效果。著名的案例包括新泽西州快餐店提高最低工资政策对就业影响的研究,比较对象是在新泽西州边界另一侧,费城那边那些没受到该政策影响的快餐店;还有通过研究南部城市的犯罪率来评估马里埃尔移民潮如何影响犯罪的案例。在双重差分场景中,合成对照的控制组可被理解为一个加权平均,其中的一些单元相当于得到了零权重,而另外的一些单元则得到了非零权重(每个单元内的数据共享同一权重值)。
+
合成对照方法试图用一种更加系统的方法为控制组分配权重。它通常用干预之前比较长一段时间内的多个时间序列作为输入数据,估计一组权重值使得这些输入数据加权的结果尽可能地拟合治疗组的时间序列数据,并将结果用作控制组时间序列数据。特别地,假设我们在T个时间段里共有J个观测量(单元),其中一个单元在<math>T_{0}</math>时间接受了治疗,<math>T_{0}<T.</math>。让
 
  −
The synthetic control method tries to offer a more systematic way to assign weights to the control group. It typically uses a relatively long time series of the outcome prior to the intervention and estimates weights in such a way that the control group mirrors the treatment group as closely as possible. In particular, assume we have ''J'' observations over ''T'' time periods where the relevant treatment occurs at time <math>T_{0}</math> where <math>T_{0}<T.</math> Let
      
:<math>\alpha_{it}=Y_{it}-Y^N_{it},</math>
 
:<math>\alpha_{it}=Y_{it}-Y^N_{it},</math>
be the treatment effect for unit <math>i</math> at time <math>t</math>, where <math>Y^N_{it}</math> is the outcome in absence of the treatment. Without loss of generality, if unit 1 receives the relevant treatment, only <math>Y^N_{1t}</math>is not observed for <math>t>T_{0}</math>. We aim to estimate <math>(\alpha_{1T_{0}+1}......\alpha_{1T})</math>.
     −
:
+
为单元<math>i</math>的在时间<math>t</math>的治疗效果,其中<math>Y^N_{it}</math>是未经治疗的结果。不失一般性,如果指定单元1接受治疗,则只有单元1的数据<math>Y^N_{1t}</math>在 <math>t>T_{0}</math>时段是无法观测的。而我们的目标是要估计<math>(\alpha_{1T_{0}+1}......\alpha_{1T})</math>的值。
The synthetic control method tries to offer a more systematic way to assign weights to the control group. It typically uses a relatively long time series of the outcome prior to the intervention and estimates weights in such a way that the control group mirrors the treatment group as closely as possible. In particular, assume we have J observations over T time periods where the relevant treatment occurs at time T_{0} where T_{0}<T. Let
     −
:\alpha_{it}=Y_{it}-Y^N_{it},
  −
be the treatment effect for unit i at time t, where Y^N_{it} is the outcome in absence of the treatment. Without loss of generality, if unit 1 receives the relevant treatment, only Y^N_{1t}is not observed for t>T_{0}. We aim to estimate (\alpha_{1T_{0}+1}......\alpha_{1T}).
     −
:
+
强加一些结构
   −
综合控制方法试图为控制组的权重分配提供一种更加系统的方法。它通常使用一个相对较长的时间序列的结果之前的干预和估计权重的方式,控制组镜像治疗组尽可能接近。特别地,假设我们在 t 时间段有 j 观测值,在 t {0} < t 时相应的处理发生在 t {0} < t 时。让
+
: <math>Y^N_{it}=\delta_{t}+\theta_{t}Z_{i}+\lambda_{t}\mu_{i}+\varepsilon_{it}</math>
 
+
假设存在一些最优权重<math>w_2, \ldots, w_J</math>,使得
alpha _ { it } = y _ { it }-y ^ n _ { it } ,为时间 t 的单位 i 的治疗效果,其中 y ^ n _ { it }是未经治疗的结果。不失一般性,如果单位1接受相应的治疗,只有 y ^ n {1 t }没有观察到 t > t {0}。我们的目标是估计(alpha _ {1T _ {0} + 1} ... ... alpha _ {1T })。
  −
 
  −
 
  −
【翻译】合成对照方法试图用一种更加系统的方法为控制组分配权重。它通常用干预之前比较长一段时间内的多个时间序列作为输入数据,估计一组权重值使得这些输入数据加权的结果尽可能地拟合治疗组的时间序列数据,并将结果用作控制组时间序列数据。特别地,假设我们在T个时间段里共有J个观测量(单元),其中一个单元在T_{0}时间接受了治疗,T_{0}<T。让
  −
 
  −
: \alpha_{it}=Y_{it}-Y^N_{it},
  −
 
  −
为单元 i 的在时间 t 的治疗效果,其中 Y^N_{it} 是未经治疗的结果。不失一般性,如果指定单元1接受治疗,则只有单元1的数据 Y^N_{1t}在 t > T_{0} 时段是无法观测的。而我们的目标是要估计(\alpha_{1T_{0}+1} ... ... \alpha_{1T})的值。
  −
 
  −
 
  −
Imposing some structure
  −
 
  −
:<math>Y^N_{it}=\delta_{t}+\theta_{t}Z_{i}+\lambda_{t}\mu_{i}+\varepsilon_{it}</math>
  −
and assuming there exist some optimal weights <math>w_2, \ldots, w_J</math> such that
   
:<math>Y_{1t} = \Sigma^J_{j=2} w_{j}Y_{jt}</math>
 
:<math>Y_{1t} = \Sigma^J_{j=2} w_{j}Y_{jt}</math>
   −
for <math>t\leqslant T_{0}</math>, the synthetic controls approach suggests using these weights to estimate the counterfactual
     −
: <math>Y^N_{1t}=\Sigma^J_{j=2}w_{j}Y_{jt}</math>
+
而对于<math>t\leqslant T_{0}</math>,合成对照方法建议使用这些权重来做出反事实估计
for <math>t>T_{0}</math>. So under some regularity conditions, such weights would provide estimators for the treatment effects of interest. In essence, the method uses the idea of matching and using the training data pre-intervention to set up the weights and hence a relevant control post-intervention.<ref name=":0">{{cite journal |last=Abadie |first=A. |authorlink=Alberto Abadie |first2=A. |last2=Diamond |first3= J. |last3=Hainmüller |year=2010 |title=Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program |journal=[[Journal of the American Statistical Association]] |volume=105 |issue=490 |pages=493–505 |doi=10.1198/jasa.2009.ap08746 }}</ref>
+
:<math>Y^N_{1t}=\Sigma^J_{j=2}w_{j}Y_{jt}</math>  
:
+
因此,在一定的正则性条件下,此类权重可以作为我们所关心的治疗效果的估计量。本质上,该方法基于匹配的思想,利用干预前的数据训练得到加权组合的控制组,进而可以对干预后的控制组数据进行推断。<ref name=":0">{{cite journal |last=Abadie |first=A. |authorlink=Alberto Abadie |first2=A. |last2=Diamond |first3= J. |last3=Hainmüller |year=2010 |title=Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program |journal=[[Journal of the American Statistical Association]] |volume=105 |issue=490 |pages=493–505 |doi=10.1198/jasa.2009.ap08746 }}</ref>
   −
:Imposing some structure Y^N_{it}=\delta_{t}+\theta_{t}Z_{i}+\lambda_{t}\mu_{i}+\varepsilon_{it}
     −
and assuming there exist some optimal weights w_2, \ldots, w_J such that
+
合成对照已经被应用于许多实证研究中,从研究自然灾害和经济增长,<ref>{{cite journal |last=Cavallo |first=E. |first2=S. |last2=Galliani |first3=I. |last3=Noy |first4=J. |last4=Pantano |year=2013 |title=Catastrophic Natural Disasters and Economic Growth |journal=[[Review of Economics and Statistics]] |volume=95 |issue=5 |pages=1549–1561 |doi=10.1162/REST_a_00413  |url=http://www.economics.hawaii.edu/research/workingpapers/WP_10-6.pdf }}</ref>到研究政治谋杀与房价之间的联系。<ref>{{cite journal |last=Gautier |first=P. A. |first2=A. |last2=Siegmann |first3=A. |last3=Van Vuuren |year=2009 |title=Terrorism and Attitudes towards Minorities: The effect of the Theo van Gogh murder on house prices in Amsterdam |journal=[[Journal of Urban Economics]] |volume=65 |issue=2 |pages=113–126 |doi=10.1016/j.jue.2008.10.004 }}</ref>
   −
:Y_{1t} = \Sigma^J_{j=2} w_{j}Y_{jt}
  −
for t\leqslant T_{0}, the synthetic controls approach suggests using these weights to estimate the counterfactual
  −
:Y^N_{1t}=\Sigma^J_{j=2}w_{j}Y_{jt}
  −
for t>T_{0}. So under some regularity conditions, such weights would provide estimators for the treatment effects of interest. In essence, the method uses the idea of matching and using the training data pre-intervention to set up the weights and hence a relevant control post-intervention.
     −
:
  −
强加一些结构
  −
: y ^ n { it } = delta { t } + theta { t } z { i } + lambda { t } mu { i } + varepsilon { it }
  −
假设存在一些最优权重 w _ 2,ldots,w _ j 使得
  −
:y {1 t } = Sigma ^ j { j = 2} w { j } y { jt }
  −
对于 t _ {0} ,综合控制方法建议使用这些权重来估计反事实
     −
:Y^N_{1t}=\Sigma^J_{j=2}w_{j}Y_{jt}
+
==参考文献==
 +
{{Reflist|30em}}
   −
for t>T_{0}.因此,在一定的正则性条件下,这种权重可以作为利息处理效果的估计量。本质上,该方法采用了匹配的思想,并利用训练数据进行干预前的权重设置,从而得到干预后的相应控制。
  −
:
         +
==编者推荐==
 +
===集智课程===
 +
====[https://campus.swarma.org/course/3527 因果科学读书会第三季:因果+X]====
 +
“因果”并不是一个新概念,而是一个已经在多个学科中使用了数十年的分析技术。通过前两季的分享,我们主要梳理了因果科学在计算机领域的前沿进展。如要融会贯通,我们需要回顾数十年来在社会学、经济学、医学、生物学等多个领域中,都是使用了什么样的因果模型、以什么样的范式、解决了什么样的问题。我们还要尝试进行对比和创新,看能否以现在的眼光,用其他的模型,为这些研究提供新的解决思路。
   −
【翻译】
     −
强加一些结构
+
“因果+X”就是要让因果真正地应用于我们的科学研究中,不管你是来自计算机、数理统计领域,还是社会学、经济学、管理学领域,还是医学、生物学领域,我们希望共同探究出因果研究的范式,真正解决因果的多学科应用问题,乃至解决工业界的问题。
   −
: <math>Y^N_{it}=\delta_{t}+\theta_{t}Z_{i}+\lambda_{t}\mu_{i}+\varepsilon_{it}</math>
  −
对于<math>t\leqslant T_{0}</math>,假设存在一些最优权重<math>w_2, \ldots, w_J</math>,使得
  −
:<math>Y_{1t} = \Sigma^J_{j=2} w_{j}Y_{jt}</math>
  −
而对于<math>t>T_{0}</math>,合成对照方法建议使用这些权重来做出反事实估计
  −
:<math>Y^N_{1t}=\Sigma^J_{j=2}w_{j}Y_{jt}</math>
  −
因此,在一定的正则性条件下,此类权重可以作为我们所关心的治疗效果的估计量。本质上,该方法基于匹配的思想,利用干预前的数据训练得到加权组合的控制组,进而可以对干预后的控制组数据进行推断。<ref name=":0" />
  −
  −
  −
Synthetic controls have been used in a number of empirical applications, ranging from studies examining natural catastrophes and growth,<ref>{{cite journal |last=Cavallo |first=E. |first2=S. |last2=Galliani |first3=I. |last3=Noy |first4=J. |last4=Pantano |year=2013 |title=Catastrophic Natural Disasters and Economic Growth |journal=[[Review of Economics and Statistics]] |volume=95 |issue=5 |pages=1549–1561 |doi=10.1162/REST_a_00413  |url=http://www.economics.hawaii.edu/research/workingpapers/WP_10-6.pdf }}</ref> and studies linking political murders to house prices.<ref>{{cite journal |last=Gautier |first=P. A. |first2=A. |last2=Siegmann |first3=A. |last3=Van Vuuren |year=2009 |title=Terrorism and Attitudes towards Minorities: The effect of the Theo van Gogh murder on house prices in Amsterdam |journal=[[Journal of Urban Economics]] |volume=65 |issue=2 |pages=113–126 |doi=10.1016/j.jue.2008.10.004 }}</ref>
  −
<!--  THE CITATION AT THE END OF THIS SENTENCE IS FOR A PAPER ABOUT "synthetic cohort models" (a.k.a. "pseudo-panel approach," using repeated cross-sections), WHICH IS NOT THE SAME AS "synthetic control":  Yet, despite its intuitive appeal, it may be the case that synthetic controls could suffer from significant finite sample biases.<ref>{{cite journal |last=Devereux |first=P. J. |year=2007 |title=Small-sample bias in synthetic cohort models of labor supply |journal=[[Journal of Applied Econometrics]] |volume=22 |issue=4 |pages=839–848 |doi=10.1002/jae.938 }}</ref>  -->
  −
  −
Synthetic controls have been used in a number of empirical applications, ranging from studies examining natural catastrophes and growth, and studies linking political murders to house prices.
  −
  −
  −
综合控制已经被应用于许多实证研究中,从研究自然灾害和经济增长,到研究政治谋杀与房价之间的联系。
  −
  −
【翻译】
  −
  −
合成对照已经被应用于许多实证研究中,从研究自然灾害和经济增长,到研究政治谋杀与房价之间的联系。
  −
  −
==References==
  −
{{Reflist|30em}}
     −
[[Category:Design of experiments]]
+
----
[[Category:Statistical methods]]
+
本中文词条由Litinunispazio97审校,[[用户:薄荷|薄荷]]编辑,如有问题,欢迎在讨论页面留言。
[[Category:Observational study]]
  −
[[Category:Econometric modeling]]
     −
Category:Design of experiments
  −
Category:Statistical methods
  −
Category:Observational study
  −
Category:Econometric modeling
     −
类别: 实验设计类别: 统计方法类别: 观察性研究类别: 计量经济模型
     −
<noinclude>
+
'''本词条内容源自wikipedia及公开资料,遵守 CC3.0协议。'''
   −
<small>This page was moved from [[wikipedia:en:Synthetic control method]]. Its edit history can be viewed at [[合成对照/edithistory]]</small></noinclude>
     −
[[Category:待整理页面]]
+
[[Category:实验设计]]
 +
[[Category:统计方法]]
 +
[[Category:观察性研究]]
 +
[[Category:计量经济模型]]
7,129

个编辑

导航菜单