'''Reservoir computing''' is a framework for computation derived from [[recurrent neural network]] theory that maps input signals into higher dimensional computational spaces through the dynamics of a fixed, non-linear system called a reservoir.<ref name=":4">{{Cite journal|last1=Tanaka|first1=Gouhei|last2=Yamane|first2=Toshiyuki|last3=Héroux|first3=Jean Benoit|last4=Nakane|first4=Ryosho|last5=Kanazawa|first5=Naoki|last6=Takeda|first6=Seiji|last7=Numata|first7=Hidetoshi|last8=Nakano|first8=Daiju|last9=Hirose|first9=Akira|title=Recent advances in physical reservoir computing: A review|journal=Neural Networks|volume=115|pages=100–123|doi=10.1016/j.neunet.2019.03.005|pmid=30981085|issn=0893-6080|year=2019|doi-access=free}}</ref> After the input signal is fed into the reservoir, which is treated as a "black box," a simple readout mechanism is trained to read the state of the reservoir and map it to the desired output.<ref name=":4" /> The first key benefit of this framework is that training is performed only at the readout stage, as the reservoir dynamics are fixed.<ref name=":4" /> The second is that the computational power of naturally available systems, both classical and quantum mechanical, can be used to reduce the effective computational cost.<ref>{{Cite journal|last1=Röhm|first1=André|last2=Lüdge|first2=Kathy|date=2018-08-03|title=Multiplexed networks: reservoir computing with virtual and real nodes|journal=Journal of Physics Communications|volume=2|issue=8|pages=085007|bibcode=2018JPhCo...2h5007R|doi=10.1088/2399-6528/aad56d|issn=2399-6528|doi-access=free}}</ref> | '''Reservoir computing''' is a framework for computation derived from [[recurrent neural network]] theory that maps input signals into higher dimensional computational spaces through the dynamics of a fixed, non-linear system called a reservoir.<ref name=":4">{{Cite journal|last1=Tanaka|first1=Gouhei|last2=Yamane|first2=Toshiyuki|last3=Héroux|first3=Jean Benoit|last4=Nakane|first4=Ryosho|last5=Kanazawa|first5=Naoki|last6=Takeda|first6=Seiji|last7=Numata|first7=Hidetoshi|last8=Nakano|first8=Daiju|last9=Hirose|first9=Akira|title=Recent advances in physical reservoir computing: A review|journal=Neural Networks|volume=115|pages=100–123|doi=10.1016/j.neunet.2019.03.005|pmid=30981085|issn=0893-6080|year=2019|doi-access=free}}</ref> After the input signal is fed into the reservoir, which is treated as a "black box," a simple readout mechanism is trained to read the state of the reservoir and map it to the desired output.<ref name=":4" /> The first key benefit of this framework is that training is performed only at the readout stage, as the reservoir dynamics are fixed.<ref name=":4" /> The second is that the computational power of naturally available systems, both classical and quantum mechanical, can be used to reduce the effective computational cost.<ref>{{Cite journal|last1=Röhm|first1=André|last2=Lüdge|first2=Kathy|date=2018-08-03|title=Multiplexed networks: reservoir computing with virtual and real nodes|journal=Journal of Physics Communications|volume=2|issue=8|pages=085007|bibcode=2018JPhCo...2h5007R|doi=10.1088/2399-6528/aad56d|issn=2399-6528|doi-access=free}}</ref> |