第1行: |
第1行: |
| 此词条暂由彩云小译翻译,翻译字数共1727,正在由[[用户:Llk|用户Llk]]进行审阅,带来阅读不便,请见谅。 | | 此词条暂由彩云小译翻译,翻译字数共1727,正在由[[用户:Llk|用户Llk]]进行审阅,带来阅读不便,请见谅。 |
| | | |
− | [[Image:Bistability graph.svg|thumb|upright=1.4|A graph of the [[potential energy]] of a bistable system; it has two local minima <math>x_1</math> and <math>x_2</math>. A surface shaped like this with two "low points" can act as a bistable system; a ball resting on the surface can only be stable at those two positions, such as balls marked "1" and "2". Between the two is a local maximum <math>x_3</math>. A ball located at this point, ball 3, is in equilibrium but unstable; the slightest disturbance will cause it to move to one of the stable points.]]
| |
| | | |
| | | |
第38行: |
第37行: |
| </math> | | </math> |
| | | |
− | 该方程有三个平衡点: <math>y=1</math>, <math>y=0</math>, and <math>y=-1</math>。中点 <math>y=0</math> 不稳定,而其他两点是稳定的。<math>y(t)</math>的演化方向和最终状态取决于初始条件 <math>y(0)</math>。若 <math>y(0)>0</math>,则 <math>y(t)</math> 趋向于1,若 <math>y(0)<0</math>,则 <math>y(t)</math> 趋向-1。<ref name="Chong">{{cite journal | author = Ket Hing Chong | author2 = Sandhya Samarasinghe | author3 = Don Kulasiri | author4 = Jie Zheng | name-list-style = amp | year = 2015| title = Computational techniques in mathematical modelling of biological switches | journal = Modsim2015 | pages = 578–584 }} For detailed techniques of mathematical modelling of bistability, see the tutorial by Chong et al. (2015) http://www.mssanz.org.au/modsim2015/C2/chong.pdf The tutorial provides a simple example illustration of bistability using a synthetic toggle switch proposed in {{cite journal |last1=Collins |first1=James J. |last2=Gardner |first2=Timothy S. |last3=Cantor |first3=Charles R. |title=Construction of a genetic toggle switch in Escherichia coli |journal=Nature |volume=403 |issue=6767 |pages=339–42 |year=2000 |pmid=10659857 |doi=10.1038/35002131 |bibcode=2000Natur.403..339G |s2cid=345059 }}. The tutorial also uses the dynamical system software XPPAUT http://www.math.pitt.edu/~bard/xpp/xpp.html to show practically how to see bistability captured by a saddle-node bifurcation diagram and the hysteresis behaviours when the bifurcation parameter is increased or decreased slowly over the tipping points and a protein gets turned 'On' or turned 'Off'.</ref> | + | 该方程有三个平衡点: <math>y=1</math>, <math>y=0</math>, and <math>y=-1</math>。中点 <math>y=0</math> 不稳定,而其他两点是稳定的。<math>y(t)</math>的演化方向和最终状态取决于初始条件 <math>y(0)</math>。若 <math>y(0)>0</math>,则 <math>y(t)</math> 趋向于1,若 <math>y(0)<0</math>,则 <math>y(t)</math> 趋向-1。<ref name="Chong">{{cite journal | author = Ket Hing Chong | author2 = Sandhya Samarasinghe | author3 = Don Kulasiri | author4 = Jie Zheng | year = 2015| title = Computational techniques in mathematical modelling of biological switches | journal = Modsim2015 | pages = 578–584 }} For detailed techniques of mathematical modelling of bistability, see the tutorial by Chong et al. (2015) http://www.mssanz.org.au/modsim2015/C2/chong.pdf The tutorial provides a simple example illustration of bistability using a synthetic toggle switch proposed in {{cite journal |last1=Collins |first1=James J. |last2=Gardner |first2=Timothy S. |last3=Cantor |first3=Charles R. |title=Construction of a genetic toggle switch in Escherichia coli |journal=Nature |volume=403 |issue=6767 |pages=339–42 |year=2000 |pmid=10659857 |doi=10.1038/35002131 |bibcode=2000Natur.403..339G }}. The tutorial also uses the dynamical system software XPPAUT http://www.math.pitt.edu/~bard/xpp/xpp.html to show practically how to see bistability captured by a saddle-node bifurcation diagram and the hysteresis behaviours when the bifurcation parameter is increased or decreased slowly over the tipping points and a protein gets turned 'On' or turned 'Off'.</ref> |
| | | |
| 更复杂的双稳性系统 <math>\frac{dy}{dt} = y (r-y^2)</math> 具有超临界的'''<font color="#ff8000">叉分岔pitchfork bifurcation</font>'''现象。 | | 更复杂的双稳性系统 <math>\frac{dy}{dt} = y (r-y^2)</math> 具有超临界的'''<font color="#ff8000">叉分岔pitchfork bifurcation</font>'''现象。 |
| | | |
| ==生物化学== | | ==生物化学== |
− |
| |
− | [[File:Stimuli.pdf|thumb|Three-dimensional invariant measure for cellular-differentiation featuring a two-stable mode.
| |
− | The axes denote cell counts for three types of cells: progenitor (<math>z</math>), osteoblast (<math>y</math>), and chondrocyte (<math>x</math>). Pro-osteoblast stimulus promotes P→O transition.<ref name=CME>{{cite journal | last1 = Kryven| first1 = I.| last2 = Röblitz| first2 = S.| last3 = Schütte| first3 = Ch.| year =2015| title = Solution of the chemical master equation by radial basis functions approximation with interface tracking| journal = BMC Systems Biology | volume = 9| issue = 1| pages = 67| doi = 10.1186/s12918-015-0210-y| pmid = 26449665| pmc= 4599742}} {{open access}}</ref>]]
| |
− |
| |
| | | |
| 若想合理利用双稳性,生物化学系统需要具备三个必要条件:正反馈机制、约束机制和稳定机制。<ref name=Wilhelm>{{cite journal |author = Wilhelm, T |year = 2009 |title = The smallest chemical reaction system with bistability |journal = BMC Systems Biology |volume = 3 |pages = 90 |doi = 10.1186/1752-0509-3-90 |pmid = 19737387 |pmc = 2749052}}</ref>。 | | 若想合理利用双稳性,生物化学系统需要具备三个必要条件:正反馈机制、约束机制和稳定机制。<ref name=Wilhelm>{{cite journal |author = Wilhelm, T |year = 2009 |title = The smallest chemical reaction system with bistability |journal = BMC Systems Biology |volume = 3 |pages = 90 |doi = 10.1186/1752-0509-3-90 |pmid = 19737387 |pmc = 2749052}}</ref>。 |
第64行: |
第59行: |
| | | |
| | | |
− | '''稳定机制'''(比如额外的激活子activator和抑制子inhibitor)能够提升系统的'''鲁棒性robustness''',使系统能够容忍更剧烈的生化参数变化,保持“开关”特性。例如,在细胞生物学中, CDK1(Cyclin Dependent Kinase 1)激活 Cdc25(激活子activator),同时使 Wee1(inactivator)失活,让细胞进入有丝分裂。如果没有这种双重反馈,系统仍然是双稳态的,但是不能容忍如此广泛的浓度范围。<ref>{{cite journal|author=Ferrell JE Jr.|title=Feedback regulation of opposing enzymes generates robust, all-or-none bistable responses|journal=Current Biology|year=2008|volume=18|issue=6|doi=10.1016/j.cub.2008.02.035|pages=R244–R245|pmid=18364225|pmc=2832910}}</ref>双稳态在'''黑腹果蝇Drosophila melanogaster'''的胚胎发育中也被描述过,例如'''前后轴anterior-posterior axis'''和'''背腹轴dorso-ventral axis'''<ref>{{cite journal|last=Wang|first=Yu-Chiun|author2=Ferguson, Edwin L.|title=Spatial bistability of Dpp–receptor interactions during Drosophila dorsal–ventral patterning|journal=Nature|date=10 March 2005|volume=434|issue=7030|pages=229–234|doi=10.1038/nature03318|pmid=15759004|bibcode=2005Natur.434..229W|s2cid=4415152}}</ref><ref>{{cite journal|last=Umulis|first=D. M. |author2=Mihaela Serpe |author3=Michael B. O’Connor |author4=Hans G. Othmer|title=Robust, bistable patterning of the dorsal surface of the Drosophila embryo|journal=Proceedings of the National Academy of Sciences|date=1 August 2006|volume=103|issue=31|pages=11613–11618|doi=10.1073/pnas.0510398103 |pmid=16864795 |pmc=1544218|bibcode=2006PNAS..10311613U |doi-access=free }}</ref>的形成与眼睛的发育。<ref>{{cite journal|last=Graham|first=T. G. W.|author2=Tabei, S. M. A.|author3=Dinner, A. R.|author4=Rebay, I.|title=Modeling bistable cell-fate choices in the Drosophila eye: qualitative and quantitative perspectives|journal=Development|date=22 June 2010|volume=137|issue=14|pages=2265–2278|doi=10.1242/dev.044826|pmid=20570936|pmc=2889600}}</ref> | + | '''稳定机制'''(比如额外的激活子activator和抑制子inhibitor)能够提升系统的'''鲁棒性robustness''',使系统能够容忍更剧烈的生化参数变化,保持“开关”特性。例如,在细胞生物学中, CDK1(Cyclin Dependent Kinase 1)激活 Cdc25(激活子activator),同时使 Wee1(inactivator)失活,让细胞进入有丝分裂。如果没有这种双重反馈,系统仍然是双稳态的,但是不能容忍如此广泛的浓度范围。<ref>{{cite journal|author=Ferrell JE Jr.|title=Feedback regulation of opposing enzymes generates robust, all-or-none bistable responses|journal=Current Biology|year=2008|volume=18|issue=6|doi=10.1016/j.cub.2008.02.035|pages=R244–R245|pmid=18364225|pmc=2832910}}</ref>双稳态在'''黑腹果蝇Drosophila melanogaster'''的胚胎发育中也被描述过,例如'''前后轴anterior-posterior axis'''和'''背腹轴dorso-ventral axis'''<ref>{{cite journal|last=Wang|first=Yu-Chiun|author2=Ferguson, Edwin L.|title=Spatial bistability of Dpp–receptor interactions during Drosophila dorsal–ventral patterning|journal=Nature|date=10 March 2005|volume=434|issue=7030|pages=229–234|doi=10.1038/nature03318|pmid=15759004|bibcode=2005Natur.434..229W}}</ref><ref>{{cite journal|last=Umulis|first=D. M. |author2=Mihaela Serpe |author3=Michael B. O’Connor |author4=Hans G. Othmer|title=Robust, bistable patterning of the dorsal surface of the Drosophila embryo|journal=Proceedings of the National Academy of Sciences|date=1 August 2006|volume=103|issue=31|pages=11613–11618|doi=10.1073/pnas.0510398103 |pmid=16864795 |pmc=1544218|bibcode=2006PNAS..10311613U |doi-access=free }}</ref>的形成与眼睛的发育。<ref>{{cite journal|last=Graham|first=T. G. W.|author2=Tabei, S. M. A.|author3=Dinner, A. R.|author4=Rebay, I.|title=Modeling bistable cell-fate choices in the Drosophila eye: qualitative and quantitative perspectives|journal=Development|date=22 June 2010|volume=137|issue=14|pages=2265–2278|doi=10.1242/dev.044826|pmid=20570936|pmc=2889600}}</ref> |
| | | |
| 另一个典型例子是音猬因子Sonic hedgehog(Shh)信号网络,同时存在的正反馈环路和负反馈环路。Shh是一种分泌型信号分子,在发育过程中起着关键作用,比如肢芽limb bud组织分化。当Shh浓度到达阈值时,gli1和 gli2的转录被激活,相应的产物作为转录激活因子进一步增强自身的转录,同时增强Ptc(一种抑制因子)的转录。<ref>Lai, K., M.J. Robertson, and D.V. Schaffer, The sonic hedgehog signaling system as a bistable genetic switch. Biophys J, 2004. 86(5): pp. 2748–57.</ref> | | 另一个典型例子是音猬因子Sonic hedgehog(Shh)信号网络,同时存在的正反馈环路和负反馈环路。Shh是一种分泌型信号分子,在发育过程中起着关键作用,比如肢芽limb bud组织分化。当Shh浓度到达阈值时,gli1和 gli2的转录被激活,相应的产物作为转录激活因子进一步增强自身的转录,同时增强Ptc(一种抑制因子)的转录。<ref>Lai, K., M.J. Robertson, and D.V. Schaffer, The sonic hedgehog signaling system as a bistable genetic switch. Biophys J, 2004. 86(5): pp. 2748–57.</ref> |
| | | |
| | | |
− | 双稳态化学体系已经被广泛研究,用以分析弛豫动力学,非平衡态热力学,随机共振,以及气候变化<ref name=Wilhelm/>。在'''空间扩展系统spatially extended systems'''中,双稳态被用以分析局域相关性和行波的传播。<ref name=Elf>{{cite journal |last1 = Elf |first1 = J. | last2 = Ehrenberg| first2 = M. |s2cid = 17770042 |year = 2004 |title = Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases |journal = Systems Biology|volume = 1 |number = 2| pages = 230–236 |pmid = 17051695 | doi=10.1049/sb:20045021}}</ref><ref name=Kochanzyck>{{cite journal |last1 = Kochanczyk |first1 = M. |last2 = Jaruszewicz |first2 = J. |last3 = Lipniacki |first3 = T. |title = Stochastic transitions in a bistable reaction system on the membrane |journal = Journal of the Royal Society Interface |volume = 10 |number = 84 |pages = 20130151 |pmid = 23635492 |pmc = 3673150 |doi = 10.1098/rsif.2013.0151 |date=Jul 2013}}</ref> | + | 双稳态化学体系已经被广泛研究,用以分析弛豫动力学,非平衡态热力学,随机共振,以及气候变化<ref name=Wilhelm/>。在'''空间扩展系统spatially extended systems'''中,双稳态被用以分析局域相关性和行波的传播。<ref name=Elf>{{cite journal |last1 = Elf |first1 = J. | last2 = Ehrenberg| first2 = M. |year = 2004 |title = Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases |journal = Systems Biology|volume = 1 |number = 2| pages = 230–236 |pmid = 17051695 | doi=10.1049/sb:20045021}}</ref><ref name=Kochanzyck>{{cite journal |last1 = Kochanczyk |first1 = M. |last2 = Jaruszewicz |first2 = J. |last3 = Lipniacki |first3 = T. |title = Stochastic transitions in a bistable reaction system on the membrane |journal = Journal of the Royal Society Interface |volume = 10 |number = 84 |pages = 20130151 |pmid = 23635492 |pmc = 3673150 |doi = 10.1098/rsif.2013.0151 |date=Jul 2013}}</ref> |
| | | |
| | | |
第99行: |
第94行: |
| 棘轮棘爪是一种精心设计的工具ーー一种多重稳定的“过中心”系统,用来产生不可逆的运动。当棘爪向前方转动时,它会越过中心。在这种情况下,“过中心”是指棘轮是稳定的,“锁定”在一个给定的位置,直到再次点击向前,这与棘轮无法在反方向转动无关。 | | 棘轮棘爪是一种精心设计的工具ーー一种多重稳定的“过中心”系统,用来产生不可逆的运动。当棘爪向前方转动时,它会越过中心。在这种情况下,“过中心”是指棘轮是稳定的,“锁定”在一个给定的位置,直到再次点击向前,这与棘轮无法在反方向转动无关。 |
| | | |
− | [[File:Ratchet example.gif|thumbnail|A ratchet in action. Each tooth in the ratchet together with the regions to either side of it constitutes a simple bistable mechanism.]]
| |
− |
| |
− | thumbnail|A ratchet in action. Each tooth in the ratchet together with the regions to either side of it constitutes a simple bistable mechanism.
| |
− |
| |
− | 一个行动中的棘轮。棘轮中的每个齿以及棘轮两侧的区域构成一个简单的双稳态机构。
| |
| | | |
| == 参考文献 == | | == 参考文献 == |