第6行: |
第6行: |
| '''无混淆性 Unconfoundedness''',也被叫做'''可忽略性 ignorability''',由Donald Rubin在1970年代提出<ref>Rubin, Donald (1978). "Bayesian Inference for Causal Effects: The Role of Randomization". ''The Annals of Statistics''</ref>。1983年Donald Rubin和Paul Rosenbaum提出了强可忽略分配机制,即给定足够多的基线协变量后潜在结果的联合值与分配独立: | | '''无混淆性 Unconfoundedness''',也被叫做'''可忽略性 ignorability''',由Donald Rubin在1970年代提出<ref>Rubin, Donald (1978). "Bayesian Inference for Causal Effects: The Role of Randomization". ''The Annals of Statistics''</ref>。1983年Donald Rubin和Paul Rosenbaum提出了强可忽略分配机制,即给定足够多的基线协变量后潜在结果的联合值与分配独立: |
| | | |
− | (Y(0),Y(1))⊥W|X. | + | <math>(Y(0),Y(1))\perp W|X</math> |
| | | |
− | 其中Y(0)和Y(1)是两个潜在结果,W是处理分配,X是协变量<ref>Rubin, Donald B.; Rosenbaum, Paul R. (1983). "The Central Role of the Propensity Score in Observational Studies for Causal Effects"</ref>。类似地,还有弱可忽略分配机制,只需:Y(w)⊥W|X
| |
| | | |
− | 对w=0和1成立。可忽略性也是缺失数据分析中的常见假设。
| + | 其中<math>Y(0)</math>和<math>Y(1)</math>是两个潜在结果,W是处理分配,X是协变量<ref>Rubin, Donald B.; Rosenbaum, Paul R. (1983). "The Central Role of the Propensity Score in Observational Studies for Causal Effects"</ref>。类似地,还有弱可忽略分配机制,只需:<math>Y(w)\perp W|X</math> |
| | | |
− | 定义倾向性得分e(x)=P(W=1|X=x),用以表示个体被分配到处理组的概率,可以证明,当无混淆性成立时,(Y(0),Y(1))⊥W|e(X)因此只需要控制一个一维变量,就能实现潜在结果与处理分配相互独立。
| + | 对<math>w=0和1</math>成立。可忽略性也是缺失数据分析中的常见假设。 |
| | | |
| + | 定义倾向性得分<math>e(x)=P(W=1|X=x)</math>,用以表示个体被分配到处理组的概率,可以证明,当无混淆性成立时,<math>(Y(0),Y(1))\perp W|e(X)</math>因此只需要控制一个一维变量,就能实现潜在结果与处理分配相互独立。 |
| | | |
| | | |
| 无混淆性是因果推断的基础。当无混淆性成立时,平均因果作用可以识别。 | | 无混淆性是因果推断的基础。当无混淆性成立时,平均因果作用可以识别。 |
| | | |
− | E[Y(w)]=E{E[Y(w)│X]}=E{E[Y(w)│X,W=w]}=E{E[Y│X,W=w]} | + | <math>E[Y(w)]=E\left \{ E[Y(w)|X] \right \}=E\left \{E[Y(w)|X,W=w] \right \}=E\left \{ E[Y|X,W=w] \right \}</math> |
| + | |
| | | |
| 平均因果作用的估计方法包括逆概率加权、回归、匹配等一系列方法,甚至可以构造双稳健的估计方法,使得只要倾向得分模型或回归模型之一设定正确,就能得到平均因果作用的相合估计。 | | 平均因果作用的估计方法包括逆概率加权、回归、匹配等一系列方法,甚至可以构造双稳健的估计方法,使得只要倾向得分模型或回归模型之一设定正确,就能得到平均因果作用的相合估计。 |