更改
跳到导航
跳到搜索
←上一编辑
下一编辑→
基本再生数
(查看源代码)
2022年6月12日 (日) 10:13的版本
添加11字节
、
2022年6月12日 (日) 10:13
无编辑摘要
第8行:
第8行:
以SIR模型为例【将特定人群的人口结构,划分为了易感染人群(S)、感染人群(R)以及移出者人群(R),通过对三种人群的动态变化的研究,来模拟流行病的发展规律】,其R<sub>0</sub>值,可以通过如下方式计算得到:
以SIR模型为例【将特定人群的人口结构,划分为了易感染人群(S)、感染人群(R)以及移出者人群(R),通过对三种人群的动态变化的研究,来模拟流行病的发展规律】,其R<sub>0</sub>值,可以通过如下方式计算得到:
−
由于SIR模型中,任意时间间隔
$
\delta\tau
$
内,个体恢复的概率为$\gamma\delta\tau$,不能恢复的概率为$1-\gamma\delta\tau$。因此,在总时间$\tau$后,个体仍然处于感染态的概率为
+
由于SIR模型中,任意时间间隔
<math>
\delta\tau
</math>
内,个体恢复的概率为$\gamma\delta\tau$,不能恢复的概率为$1-\gamma\delta\tau$。因此,在总时间$\tau$后,个体仍然处于感染态的概率为
\begin{equation}
\begin{equation}
\lim_{\delta\tau\to0}(1-\gamma\delta\tau)^{\tau/\delta\tau}=e^{-\gamma\tau},
\lim_{\delta\tau\to0}(1-\gamma\delta\tau)^{\tau/\delta\tau}=e^{-\gamma\tau},
水手9303
330
个编辑
导航菜单
个人工具
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
集智百科
集智主页
集智斑图
集智学园
最近更改
所有页面
帮助
工具
特殊页面
可打印版本