更改

跳到导航 跳到搜索
添加15,930字节 、 2022年6月14日 (二) 18:53
无编辑摘要
第1行: 第1行:  
参考<nowiki/>http://www.scholarpedia.org/article/Balance_of_excitation_and_inhibition
 
参考<nowiki/>http://www.scholarpedia.org/article/Balance_of_excitation_and_inhibition
 
+
此词条由神经动力学读书会词条梳理志愿者安贞桦翻译审校,未经专家审核,带来阅读不便,请见谅。
 
In the context of neurophysiology, '''balance of excitation and inhibition''' (E/I balance) refers to the relative contributions of excitatory and inhibitory synaptic inputs corresponding to some neuronal event, such as oscillation or response evoked by sensory stimulation.  
 
In the context of neurophysiology, '''balance of excitation and inhibition''' (E/I balance) refers to the relative contributions of excitatory and inhibitory synaptic inputs corresponding to some neuronal event, such as oscillation or response evoked by sensory stimulation.  
   第430行: 第430行:  
Parvalbumin (PV) expressing cells, somatostatin (Sst) expressing cells, vasoactive intestinal peptide (VIP) expressing cells and neurogliaform cells (NGs).  
 
Parvalbumin (PV) expressing cells, somatostatin (Sst) expressing cells, vasoactive intestinal peptide (VIP) expressing cells and neurogliaform cells (NGs).  
   −
小清蛋白(PV)表达细胞,生长激素抑制素(Sst)表达细胞,血管活性肠肽(VIP)表达细胞和神经胶质细胞(NGs)。
+
'''<font color="#ff8000">小清蛋白Parvalbumin</font>'''(PV)表达细胞,'''<font color="#ff8000">生长激素抑制素somatostatin</font>'''(Sst)表达细胞,'''<font color="#ff8000">血管活性肠肽vasoactive intestinal peptide</font>'''(VIP)表达细胞和'''<font color="#ff8000">神经胶质neurogliaform</font>'''细胞(NGs)。
    
Anatomical evidence and recordings in brain-slices suggest that these classes have different roles in the E/I balance and may have different functional roles across cortical layers.  
 
Anatomical evidence and recordings in brain-slices suggest that these classes have different roles in the E/I balance and may have different functional roles across cortical layers.  
第526行: 第526行:     
很明显,若没有用于平衡的抑制作用,则实现一定的去极化将需要更弱的兴奋性输入,从而增加响应的误差和可变性。
 
很明显,若没有用于平衡的抑制作用,则实现一定的去极化将需要更弱的兴奋性输入,从而增加响应的误差和可变性。
 +
 +
== References 参考文献 ==
 +
*Alonso, J M and Martinez, L M (1998). Functional connectivity between simple cells and complex cells in cat striate cortex. ''Nature Neuroscience'' 1: 395-403.
 +
*Anderson, J S; Carandini, M and Ferster, D (2000). Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. ''Journal of Neurophysiology'' 84: 909-926.
 +
*Anderson, J S; Lampl, I; Gillespie, D C and Ferster, D (2001). Membrane potential and conductance changes underlying length tuning of cells in cat primary visual cortex. ''The Journal of Neuroscience'' 21: 2104-2112.
 +
*Atallah, B V and Scanziani, M (2009). Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. ''Neuron'' 62: 566-577.
 +
*Atallah, B V; Bruns, W; Carandini, M and Scanziani, M (2012). Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. ''Neuron'' 73: 159-170.
 +
*Atallah, B V; Scanziani, M and Carandini, M (2014). Atallah et al. reply. ''Nature'' 508: E3.
 +
*Bennett, C; Arroyo, S and Hestrin, S (2013). Subthreshold mechanisms underlying state-dependent modulation of visual responses. ''Neuron'' 80: 350-357.
 +
*Ben-Yishai, R; Bar-Or, R L and Sompolinsky, H (1995). Theory of orientation tuning in visual cortex. ''Proceedings of the National Academy of Sciences of the United States of America'' 92: 3844-3848.
 +
*Berg, R W; Alaburda, A and Hounsgaard, J (2007). Balanced inhibition and excitation drive spike activity in spinal half-centers. ''Science'' 315: 390-393.
 +
*Borg-Graham, L J; Monier, C and Fregnac, Y (1996). Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex. ''Journal of Physiology Paris'' 90: 185-188.
 +
*Borg-Graham, L J; Monier, C and Fregnac, Y (1998). Visual input evokes transient and strong shunting inhibition in visual cortical neurons. ''Nature'' 393: 369-373.
 +
*Bruno, R M and Sakmann, B (2006). Cortex is driven by weak but synchronously active thalamocortical synapses. ''Science'' 312: 1622-1627.
 +
*Calford, M B and Semple, M N (1995). Monaural inhibition in cat auditory cortex. ''Journal of Neurophysiology'' 73: 1876-1891.
 +
*Chung, S and Ferster, D (1998). Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression. ''Neuron'' 20: 1177-1189.
 +
*Cohen-Kashi Malina, K; Jubran, M; Katz, Y and Lampl, I (2013). Imbalance between excitation and inhibition in the somatosensory cortex produces postadaptation facilitation. ''The Journal of Neuroscience'' 33: 8463-8471.
 +
*Crochet, S and Petersen, C C H (2006). Correlating whisker behavior with membrane potential in barrel cortex of awake mice. ''Nature Neuroscience'' 9: 608-610.
 +
*Destexhe, A; Hughes, S W; Rudolph, M and Crunelli, V (2007). Are corticothalamic 'up' states fragments of wakefulness? ''Trends in Neurosciences'' 30: 334-342.
 +
*DeWeese, M R and Zador, A M (2006). Non-Gaussian membrane potential dynamics imply sparse, synchronous activity in auditory cortex. ''The Journal of Neuroscience'' 26: 12206-12218.
 +
*Dichter, M A and Ayala, G F (1987). Cellular mechanisms of epilepsy: A status report. ''Science'' 237: 157-164.
 +
*Dorrn, A L; Yuan, K; Barker, A J; Schreiner, C E and Froemke, R C (2010). Developmental sensory experience balances cortical excitation and inhibition. ''Nature'' 465: 932-936.
 +
*Ferster, D and Miller, K D (2000). Neural mechanisms of orientation selectivity in the visual cortex. ''Annual Review of Neuroscience'' 23: 441-471.
 +
*Froemke, R C; Merzenich, M M and Schreiner, C E (2007). A synaptic memory trace for cortical receptive field plasticity. ''Nature'' 450: 425-429.
 +
*Gabernet, L; Jadhav, S P; Feldman, D E; Carandini, M and Scanziani, M (2005). Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. ''Neuron'' 48: 315-327.
 +
*Gerstein, G L and Mandelbrot, B (1964). Random walk models for the spike activity of a single neuron. ''Biophysical Journal'' 4: 41-68.
 +
*Haider, B; Duque, A; Hasenstaub, A R and McCormick, D A (2006). Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. ''The Journal of Neuroscience'' 26: 4535-4545.
 +
*Haider, B; Häusser, M and Carandini, M (2013). Inhibition dominates sensory responses in the awake cortex. ''Nature'' 493: 97-100.
 +
*Hansel, D and Sompolinsky, H (1996). Chaos and synchrony in a model of a hypercolumn in visual cortex. ''Journal of Comparative Neuroscience'' 3: 7-34.
 +
*Harris, K D and Mrsic-Flogel, T D (2013). Cortical connectivity and sensory coding. ''Nature'' 503: 51-58.
 +
*Hasenstaub, A et al. (2005). Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. ''Neuron'' 47: 423-435.
 +
*Heiss, J E; Katz, Y; Ganmor, E and Lampl, I (2008). Shift in the balance between excitation and inhibition during sensory adaptation of S1 neurons. ''The Journal of Neuroscience'' 28: 13320-13330.
 +
*Higley, M J and Contreras, D (2003). Nonlinear integration of sensory responses in the rat barrel cortex: an intracellular study in vivo. ''The Journal of Neuroscience'' 23: 10190-10200.
 +
*Higley, M J and Contreras, D (2006). Balanced excitation and inhibition determine spike timing during frequency adaptation. ''The Journal of Neuroscience'' 26: 448-457.
 +
*Hubel, D H and Wiesel, T N (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. ''Journal of Physiology (London)'' 160: 106-154.
 +
*Isaacson, J S and Scanziani, M (2011). How inhibition shapes cortical activity. ''Neuron'' 72: 231-243.
 +
*Jones, E G (1975). Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey. ''Journal of Comparative Neurology'' 160: 205-267.
 +
*Kawaguchi, Y and Kubota, Y (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. ''Cerebral Cortex'' 7: 476-486.
 +
*Lak, A; Arabzadeh, E and Diamond, M E (2008). Enhanced response of neurons in rat somatosensory cortex to stimuli containing temporal noise. ''Cerebral Cortex'' 18: 1085-1093.
 +
*Lampl, I; Reichova, I and Ferster, D (1999). Synchronous membrane potential fluctuations in neurons of the cat visual cortex. ''Neuron'' 22: 361-374.
 +
*Lee, S H et al. (2012). Activation of specific interneurons improves V1 feature selectivity and visual perception. ''Nature'' 488: 379-383.
 +
*Lee, S H; Kwan, A C and Dan, Y (2014). Interneuron subtypes and orientation tuning. ''Nature'' 508: E1-E2.
 +
*Lefort, S; Tomm, C; Floyd Sarria, J C and Petersen, C C (2009). The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. ''Neuron'' 61: 301-316.
 +
*Li, Y T; Ma, W P; Pan, C J; Zhang, L I and Tao, H W (2012). Broadening of cortical inhibition mediates developmental sharpening of orientation selectivity. ''The Journal of Neuroscience'' 32: 3981-3991.
 +
*Li, L Y et al. (2014). A feedforward inhibitory circuit mediates lateral refinement of sensory representation in upper layer 2/3 of mouse primary auditory cortex. ''The Journal of Neuroscience'' 34: 13670-13683.
 +
*Liu, B et al. (2011). Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells. ''Neuron'' 71: 542-554.
 +
*Magnusson, A K; Park, T J; Pecka, M; Grothe, B and Koch, U (2008). Retrograde GABA signaling adjusts sound localization by balancing excitation and inhibition in the brainstem. ''Neuron'' 59: 125-137.
 +
*Martinez, L M and Alonso, J M (2001). Construction of complex receptive fields in cat primary visual cortex. ''Neuron'' 32: 515-525.
 +
*Monier, C; Fournier, J and Fregnac, Y (2008). In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices. ''Journal of Neuroscience Methods'' 169: 323-365.
 +
*Moore, A K and Wehr, M (2013). Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency. ''The Journal of Neuroscience'' 33: 13713-13723.
 +
*Nelson, S; Toth, L; Sheth, B and Sur, M (1994). Orientation selectivity of cortical neurons during intracellular blockade of inhibition. ''Science'' 265: 774-777.
 +
*Okun, M and Lampl, I (2008). Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. ''Nature Neuroscience'' 11: 535-537.
 +
*Okun, M; Naim, A and Lampl, I (2010). The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. ''The Journal of Neuroscience'' 30: 4440-4448.
 +
*Polack, P O; Friedman, J and Golshani, P (2013). Cellular mechanisms of brain state-dependent gain modulation in visual cortex. ''Nature Neuroscience'' 16: 1331-1339.
 +
*Populin, L C (2005). Anesthetics change the excitation/inhibition balance that governs sensory processing in the cat superior colliculus. ''The Journal of Neuroscience'' 25: 5903-5914.
 +
*Poulet, J F and Petersen, C C (2008). Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. ''Nature'' 454: 881-885.
 +
*Priebe, N J and Ferster, D (2005). Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. ''Neuron'' 45: 133-145.
 +
*Ramon y Cajal, S (1911). ''Histologie du Systeme Nerveux de l'Homme et des Vertebres.'' Paris: Maloine.
 +
*Rudolph, M; Pospischil, M; Timofeev, I and Destexhe, A (2007). Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. ''The Journal of Neuroscience'' 27: 5280-5290.
 +
*Sachidhanandam, S; Sreenivasan, V; Kyriakatos, A; Kremer, Y and Petersen, C C H (2013). Membrane potential correlates of sensory perception in mouse barrel cortex. ''Nature Neuroscience'' 16: 1671-1677.
 +
*Shadlen, M N and Newsome, W T (1994). Noise, neural codes and cortical organization. ''Current Opinion in Neurobiology'' 4: 569-579.
 +
*Shadlen, M N and Newsome, W T (1998). The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. ''The Journal of Neuroscience'' 18: 3870-3896.
 +
*Shapley, R M and Xing, D (2013). Local circuit inhibition in the cerebral cortex as the source of gain control and untuned suppression. ''Neural Networks'' 37: 172-181.
 +
*Shu, Y; Hasenstaub, A and McCormick, D A (2003). Turning on and off recurrent balanced cortical activity. ''Nature'' 423: 288-293.
 +
*Sillito, A M (1975). The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. ''Journal of Physiology'' 250: 305-329.
 +
*Softky, W R and Koch, C (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. ''The Journal of Neuroscience'' 13: 334-350.
 +
*Somers, D C; Nelson, S B and Sur, M (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. ''The Journal of Neuroscience'' 15: 5448-5465.
 +
*Stevens, C F and Zador, A M (1998). Input synchrony and the irregular firing of cortical neurons. ''Nature Neuroscience'' 1: 210-217.
 +
*Sun, Y J et al. (2010). Fine-tuning of pre-balanced excitation and inhibition during auditory cortical development. ''Nature'' 465: 927-931.
 +
*Sun, Y J; Kim, Y J; Ibrahim, L A; Tao, H W and Zhang, L I (2013). Synaptic mechanisms underlying functional dichotomy between intrinsic-bursting and regular-spiking neurons in auditory cortical layer 5. ''The Journal of Neuroscience'' 33: 5326-5339.
 +
*Sutter, M L; Schreiner, C E; McLean, M; O'Connor, K N and Loftus, W C (1999). Organization of inhibitory frequency receptive fields in cat primary auditory cortex. ''Journal of Neurophysiology'' 82: 2358-2371.
 +
*Tan, A Y Y; Chen, Y; Scholl, B; Seidemann, E and Priebe, N J (2014). Sensory stimulation shifts visual cortex from synchronous to asynchronous states. ''Nature'' 509: 226-229.
 +
*Taub, A H; Katz, Y and Lampl, I (2013). Cortical balance of excitation and inhibition is regulated by the rate of synaptic activity. ''The Journal of Neuroscience'' 33: 14359-14368.
 +
*van Vreeswijk, C and Sompolinsky, H (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. ''Science'' 274: 1724-1726.
 +
*Vogels, T P; Rajan, K and Abbott, L F (2005). Neural network dynamics. ''Annual Review of Neuroscience'' 28: 357-376.
 +
*Volgushev, M; Vidyasagar, T R and Pei, X (1996). A linear model fails to predict orientation selectivity of cells in the cat visual cortex. Journal of Physiology (London)'' 496: 597-606.
 +
*Wang, J; McFadden, S L; Caspary, D and Salvi, R (2002). Gamma-aminobutyric acid circuits shape response properties of auditory cortex neurons. ''Brain Research'' 944: 219-231.
 +
*Wehr, M and Zador, A M (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. ''Nature'' 426: 442-446.
 +
*Wehr, M and Zador, A M (2005). Synaptic mechanisms of forward suppression in rat auditory cortex. ''Neuron'' 47: 437-445.
 +
*Wilent, W B and Contreras, D (2005). Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. ''Nature Neuroscience'' 8: 1364-1370.
 +
*Wilson, N R; Runyan, C A; Wang, F L and Sur, M (2012). Division and subtraction by distinct cortical inhibitory networks in vivo. ''Nature'' 488: 343-348.
 +
*Wu, G K; Li, P; Tao, H W and Zhang, L I (2006). Nonmonotonic synaptic excitation and imbalanced inhibition underlying cortical intensity tuning. ''Neuron'' 52: 705-715.
 +
*Wu, G K; Arbuckle, R; Liu, B H; Tao, H W and Zhang, L I (2008). Lateral sharpening of cortical frequency tuning by approximately balanced inhibition. ''Neuron'' 58: 132-143.
 +
*Xue, M; Atallah, B V and Scanziani, M (2014). Equalizing excitation-inhibition ratios across visual cortical neurons. ''Nature'' 511: 596-600.
 +
*Yizhar, O et al. (2011). Neocortical excitation/inhibition balance in information processing and social dysfunction. ''Nature'' 477: 171-178.
 +
*Zhou, M et al. (2014). Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. ''Nature Neuroscience'' 17: 841-850.
 +
 +
<b>Internal references</b>
 +
 +
* Burke, R E (2008). Spinal cord. ''Scholarpedia'' 3(4): 1925. http://www.scholarpedia.org/article/Spinal_cord.
 +
 +
* Destexhe, A (2007). High-conductance state. ''Scholarpedia'' 2(11): 1341. http://www.scholarpedia.org/article/High-conductance_state.
 +
 +
* Freund, T and Kali, S (2008). Interneurons. ''Scholarpedia'' 3(9): 4720. http://www.scholarpedia.org/article/Interneurons.
 +
 +
* Jonas, P and Buzsaki, G (2007). Neural inhibition. ''Scholarpedia'' 2(9): 3286. http://www.scholarpedia.org/article/Neural_inhibition.
 +
 +
* Llinas, R (2008). Neuron. ''Scholarpedia'' 3(8): 1490. http://www.scholarpedia.org/article/Neuron.
 +
 +
* Meiss, J (2007). Dynamical systems. ''Scholarpedia'' 2(2): 1629. http://www.scholarpedia.org/article/Dynamical_systems.
 +
 +
* Moore, J W (2007). Voltage clamp. ''Scholarpedia'' 2(9): 3060. http://www.scholarpedia.org/article/Voltage_clamp.
 +
 +
* Pikovsky, A and Rosenblum, M (2007). Synchronization. ''Scholarpedia'' 2(12): 1459. http://www.scholarpedia.org/article/Synchronization.
 +
 +
* Skinner, F K (2006). Conductance-based models. ''Scholarpedia'' 1(11): 1408. http://www.scholarpedia.org/article/Conductance-based_models.
 +
 +
* Wilson, C (2008). Up and down states. ''Scholarpedia'' 3(6): 1410. http://www.scholarpedia.org/article/Up_and_down_states.
 +
 +
== 另见 ==
 +
[[Inhibition]], [[High-conductance state]]
 +
 +
[[Category:Touch]]
 +
[[Category:Computational Neuroscience]]
 +
[[Category:Neuroscience]]
 +
[[Category:Synapse]]
 +
[[Category:Models of Neurons]]
 +
[[Category:Multiple Curators]]
82

个编辑

导航菜单