更改

跳到导航 跳到搜索
删除8,952字节 、 2022年6月16日 (四) 20:06
无编辑摘要
第1行: 第1行: −
此词条暂由水流心不竞初译,未经审校,带来阅读不便,请见谅。
+
'''帕累托分布 Pareto distribution,'''以意大利土木工程师、经济学家和社会学家<font color="#ff8000">维尔弗雷多·帕累托Vilfredo Pareto</font>命名<ref>{{Cite journal|last=Amoroso|first=Luigi|date=1938|title=VILFREDO PARETO|url=|journal=Econometrica (Pre-1986); Jan 1938; 6, 1; ProQuest|volume=6|pages=|via=}}</ref>,是一种用于描述社会、科学、地球物理、保险精算和许多其他类型的可观测现象的幂律概率分布。其最初用于描述一个社会中的财富分配,拟合大部分财富由一小部分人口持有的分布情况<ref>{{Cite journal|last=Pareto|first=Vilfredo|date=1898|title=Cours d'economie politique|url=|journal=Journal of Political Economy|volume=6|pages=|via=}}</ref>,<font color="#ff8000"> 帕累托分布</font>被通俗地称为'''帕雷托法则''',或“'''80-20法则'''” ,有时也被称为<font color="#ff8000"> “'''马太原则'''”</font>。例如一个社会80% 的财富掌握在20% 的人口手中这样的社会现象。然而,<font color="#ff8000">'''帕累托分布'''</font>与'''帕雷托法则'''并不能混为一谈,因为前者只对一个特定的幂值产生这个结果,即 α = log45≈1.16。虽然 α 值是一个参数,但经验观察发现80-20分布适用于各种情况,包括自然现象<ref>{{Cite journal|last=VAN MONTFORT|first=M.A.J.|date=1986|title=The Generalized Pareto distribution applied to rainfall depths|journal=Hydrological Sciences Journal|volume=31|issue=2|pages=151–162|doi=10.1080/02626668609491037|doi-access=free}}</ref>和人类活动<ref>{{Cite journal|last=Oancea|first=Bogdan|date=2017|title=Income inequality in Romania: The exponential-Pareto distribution|journal=Physica A: Statistical Mechanics and Its Applications|volume=469|pages=486–498|doi=10.1016/j.physa.2016.11.094|bibcode=2017PhyA..469..486O}}</ref>。
   −
{{Probability distribution
  −
| name      =Pareto Type I
  −
| type      =density
  −
| pdf_image  =[[File:Probability density function of Pareto distribution.svg|325px|Pareto Type I probability density functions for various ''α'']]<br />Pareto Type I probability density functions for various <math>\alpha</math> with <math>x_\mathrm{m} = 1.</math> As <math>\alpha \rightarrow \infty,</math> the distribution approaches <math>\delta(x - x_\mathrm{m}),</math> where <math>\delta</math> is the [[Dirac delta function]].
  −
| cdf_image  =[[File:Cumulative distribution function of Pareto distribution.svg|325px|Pareto Type I cumulative distribution functions for various ''α'']]<br />Pareto Type I cumulative distribution functions for various <math>\alpha</math> with <math>x_\mathrm{m} = 1.</math>
  −
| parameters =<math>x_\mathrm{m} > 0</math> [[scale parameter|scale]] ([[real number|real]])<br /><math>\alpha > 0</math> [[shape parameter|shape]] (real)
  −
| support    =<math>x \in [x_\mathrm{m}, \infty)</math>
  −
| pdf        =<math>\frac{\alpha x_\mathrm{m}^\alpha}{x^{\alpha+1}}</math>
  −
| cdf        =<math>1-\left(\frac{x_\mathrm{m}}{x}\right)^\alpha</math>
  −
| mean      =<math>\begin{cases}
  −
    \infty & \text{for }\alpha\le 1 \\
  −
    \dfrac{\alpha x_\mathrm{m}}{\alpha-1} & \text{for }\alpha>1
  −
  \end{cases}</math>
  −
| median    =<math>x_\mathrm{m} \sqrt[\alpha]{2}</math>
  −
| mode      =<math>x_\mathrm{m}</math>
  −
| variance  =<math>\begin{cases}
  −
    \infty & \text{for }\alpha\le 2 \\
  −
    \dfrac{x_\mathrm{m}^2\alpha}{(\alpha-1)^2(\alpha-2)} & \text{for }\alpha>2
  −
  \end{cases}</math>
  −
| skewness  =<math>\frac{2(1+\alpha)}{\alpha-3}\sqrt{\frac{\alpha-2}{\alpha}}\text{ for }\alpha>3</math>
  −
| kurtosis  =<math>\frac{6(\alpha^3+\alpha^2-6\alpha-2)}{\alpha(\alpha-3)(\alpha-4)}\text{ for }\alpha>4</math>
  −
| entropy    =<math>\log\left(\left(\frac{x_\mathrm{m}}{\alpha}\right)\,e^{1+\tfrac{1}{\alpha}}\right) </math>
  −
| mgf        =<math>\alpha(-x_\mathrm{m}t)^\alpha\Gamma(-\alpha,-x_\mathrm{m}t)\text{ for }t<0</math>
  −
| char      =<math>\alpha(-ix_\mathrm{m}t)^\alpha\Gamma(-\alpha,-ix_\mathrm{m}t)</math>
  −
| fisher    =<math>\mathcal{I}(x_\mathrm{m},\alpha) = \begin{bmatrix}
  −
                  \dfrac{\alpha}{x_\mathrm{m}^2} & -\dfrac{1}{x_\mathrm{m}} \\
  −
                  -\dfrac{1}{x_\mathrm{m}} & \dfrac{1}{\alpha^2}
  −
              \end{bmatrix}</math>
     −
              Right: <math>\mathcal{I}(x_\mathrm{m},\alpha) = \begin{bmatrix}
  −
                  \dfrac{\alpha^2}{x_\mathrm{m}^2} & 0 \\
  −
                  0 & \dfrac{1}{\alpha^2}
  −
              \end{bmatrix}</math>
  −
}}
        −
The '''Pareto distribution''', named after the Italian [[civil engineer]], [[economist]], and sociologist [[Vilfredo Pareto]],<ref>{{Cite journal|last=Amoroso|first=Luigi|date=1938|title=VILFREDO PARETO|url=|journal=Econometrica (Pre-1986); Jan 1938; 6, 1; ProQuest|volume=6|pages=|via=}}</ref> is a [[power-law]] [[probability distribution]] that is used in description of [[social sciences|social]], [[scientific]], [[geophysical]], [[actuarial science|actuarial]], and many other types of observable phenomena. Originally applied to describing the [[distribution of wealth]] in a society, fitting the trend that a large portion of wealth is held by a small fraction of the population,<ref>{{Cite journal|last=Pareto|first=Vilfredo|date=1898|title=Cours d'economie politique|url=|journal=Journal of Political Economy|volume=6|pages=|via=}}</ref> the Pareto distribution has colloquially become known and referred to as the [[Pareto principle]], or "80-20 rule", and is sometimes called the "[[Matthew principle]]".<!-- can we find a better reference than https://youtu.be/5WX9UEYZsR8 at 2'10". -->  This rule states that, for example, 80% of the wealth of a society is held by 20% of its population. However, one should not conflate the Pareto distribution with the Pareto Principle as the former only produces this result for a particular power value, <math>\alpha</math> (''α''&nbsp;=&nbsp;log<sub>4</sub>5&nbsp;≈&nbsp;1.16). While <math>\alpha</math> is a parameter, empirical observation has found the 80-20 distribution to fit a wide range of cases, including natural phenomena<ref>{{Cite journal|last=VAN MONTFORT|first=M.A.J.|date=1986|title=The Generalized Pareto distribution applied to rainfall depths|journal=Hydrological Sciences Journal|volume=31|issue=2|pages=151–162|doi=10.1080/02626668609491037|doi-access=free}}</ref> and human activities.<ref>{{Cite journal|last=Oancea|first=Bogdan|date=2017|title=Income inequality in Romania: The exponential-Pareto distribution|journal=Physica A: Statistical Mechanics and Its Applications|volume=469|pages=486–498|doi=10.1016/j.physa.2016.11.094|bibcode=2017PhyA..469..486O}}</ref>
+
==定义==
   −
The Pareto distribution, named after the Italian civil engineer, economist, and sociologist Vilfredo Pareto, is a power-law probability distribution that is used in description of social, scientific, geophysical, actuarial, and many other types of observable phenomena. Originally applied to describing the distribution of wealth in a society, fitting the trend that a large portion of wealth is held by a small fraction of the population, the Pareto distribution has colloquially become known and referred to as the Pareto principle, or "80-20 rule", and is sometimes called the "Matthew principle".<!-- can we find a better reference than https://youtu.be/5WX9UEYZsR8 at 2'10". --> This rule states that, for example, 80% of the wealth of a society is held by 20% of its population. However, one should not conflate the Pareto distribution with the Pareto Principle as the former only produces this result for a particular power value, \alpha (α&nbsp;=&nbsp;log45&nbsp;≈&nbsp;1.16). While \alpha is a parameter, empirical observation has found the 80-20 distribution to fit a wide range of cases, including natural phenomena and human activities.
+
如果 X 是一个具有 '''<font color="#ff8000">帕累托分布 (I 型分布)Pareto (Type I)</font>''' 的随机变量<ref name="arnold">{{cite book |author=Barry C. Arnold |year=1983 |title=Pareto Distributions |publisher=International Co-operative Publishing House |isbn= 978-0-89974-012-6|ref=harv}}</ref>,那么 ''X'' 大于某个数 ''x'' 的概率,即'''生存函数 Survival function''' (也称为'''<font color="#ff8000"> 尾部函数Tail function</font>'''),由以下给出:
   −
以意大利土木工程师、经济学家和社会学家 <font color="#ff8000"> 维尔弗雷多·帕累托Vilfredo Pareto</font>命名的帕累托概率分布,是一种用于描述社会、科学、地球物理、保险精算和许多其他类型的可观测现象的幂律概率分布。其最初用于描述一个社会中的财富分配,来符合大部分财富由一小部分人口持有的趋势,<font color="#ff8000"> 帕累托分布</font>被通俗地称为帕雷托法则,或“80-20法则” ,有时也被称为<font color="#ff8000"> “马太原则”</font>。<!——我们能找到比https://youtu.be/5WX9UEYZsR8 at 2'10"更好的参考吗。例如,这条规则规定,一个社会80% 的财富掌握在20% 的人口手中。然而,我们不应该把<font color="#ff8000"> 帕累托分布</font>与帕雷托法则混为一谈,因为前者只对一个特定的幂值产生这个结果,即 α = log45≈1.16。虽然 α 值是一个参数,但经验观察发现80-20分布适用于各种情况,包括自然现象和人类活动。
  −
  −
  −
  −
==Definitions定义==
  −
  −
If ''X'' is a [[random variable]] with a Pareto (Type I) distribution,<ref name="arnold">{{cite book |author=Barry C. Arnold |year=1983 |title=Pareto Distributions |publisher=International Co-operative Publishing House |isbn= 978-0-89974-012-6|ref=harv}}</ref> then the probability that ''X'' is greater than some number ''x'', i.e. the [[survival function]] (also called tail function), is given by
  −
  −
If X is a random variable with a Pareto (Type I) distribution, then the probability that X is greater than some number x, i.e. the survival function (also called tail function), is given by
  −
  −
如果 X 是一个具有 '''<font color="#ff8000">帕累托分布 (1 型)Pareto (Type i)</font>'''的随机变量,那么 X 大于某个数 x 的概率,即生存函数(也称为'''<font color="#ff8000"> 尾部函数Tail function</font>'''),由以下给出
        第81行: 第37行:  
</math>
 
</math>
   −
</math>
         +
其中,''x<sub>m</sub>''是“''X”''的最小可能值(必为正),“''α''”是一个正参数。<font color="#ff8000">帕累托 I 型分布由</font>[[比例参数]]''x''<sub>m</sub>和[[形状参数]]“α”所决定,即所谓的“'''尾部指数 tail index'''”。当这个分布被用来模拟财富的分布时,参数“''α''”被称为'''[[帕累托指数]]Pareto index'''。
   −
  −
  −
where ''x''<sub>m</sub> is the (necessarily positive) minimum possible value of ''X'', and ''α'' is a positive parameter. The Pareto Type I distribution is characterized by a [[scale parameter]] ''x''<sub>m</sub> and a [[shape parameter]] ''α'', which is known as the ''tail index''. When this distribution is used to model the distribution of wealth, then the parameter ''α'' is called the [[Pareto index]].
  −
  −
where xm is the (necessarily positive) minimum possible value of X, and α is a positive parameter. The Pareto Type I distribution is characterized by a scale parameter xm and a shape parameter α, which is known as the tail index. When this distribution is used to model the distribution of wealth, then the parameter α is called the Pareto index.
  −
  −
其中,''x''<sub>m</sub>是“X”的最小可能值(必然为正),“α”是一个正参数。<font color="#ff8000">帕累托 i 型分布 Pareto Type I distribution</font>的特征值是[[比例参数]]''x''<sub>m</sub>和[[形状参数]]“α”,即所谓的“尾部指数”。当这个分布被用来模拟财富的分布时,参数“α”被称为[[帕累托指数]]。
        第97行: 第46行:  
==='''<font color="#ff8000">Cumulative distribution function 累积分布函数</font>'''===
 
==='''<font color="#ff8000">Cumulative distribution function 累积分布函数</font>'''===
   −
From the definition, the [[cumulative distribution function]] of a Pareto random variable with parameters ''α'' and ''x''<sub>m</sub> is
     −
From the definition, the cumulative distribution function of a Pareto random variable with parameters α and xm is
+
根据定义,带有参数 ''α'' 和 ''x<sub>m</sub>'' 的 Pareto 随机变量的'''<font color="#ff8000"> 累积分布函数Cumulative distribution function </font>'''是
   −
根据定义,带有参数 α 和 ''x''<sub>m</sub> 的 Pareto 随机变量的'''<font color="#ff8000"> 累积分布函数Cumulative distribution function </font>'''是
        第124行: 第71行:     
\end{cases}</math>
 
\end{cases}</math>
  −
\end{cases}</math>
  −
  −
结束{ cases } </math >
      
===Probability density function概率密度函数===
 
===Probability density function概率密度函数===
  −
It follows (by [[Derivative|differentiation]]) that the [[probability density function]] is
  −
  −
It follows (by differentiation) that the probability density function is
  −
  −
由此可以得出结论: 概率密度函数为
  −
  −
  −
  −
:<math>f_X(x)= \begin{cases} \frac{\alpha x_\mathrm{m}^\alpha}{x^{\alpha+1}} & x \ge x_\mathrm{m}, \\ 0 & x < x_\mathrm{m}. \end{cases} </math>
  −
  −
f_X(x)= \begin{cases} \frac{\alpha x_\mathrm{m}^\alpha}{x^{\alpha+1}} & x \ge x_\mathrm{m}, \\ 0 & x < x_\mathrm{m}. \end{cases}
  −
  −
F _ x (x) = begin { cases } frac { alpha x mathrm { m } ^ alpha }{ x ^ alpha + 1} & x ge x mathrm { m } ,0 & x < x mathrm { m }.结束{ cases }
  −
        −
When plotted on linear axes, the distribution assumes the familiar J-shaped curve which approaches each of the orthogonal axes [[asymptotically]]. All segments of the curve are self-similar (subject to appropriate scaling factors). When plotted in a [[log-log plot]], the distribution is represented by a straight line.
+
由此可以得出'''概率密度函数Probability density function'''为
 +
:<math>f_X(x)= \begin{cases} \frac{\alpha x_\mathrm{m}^\alpha}{x^{\alpha+1}} & x \ge x_\mathrm{m}, \\ 0 & x < x_\mathrm{m}. \end{cases} </math><br />
   −
When plotted on linear axes, the distribution assumes the familiar J-shaped curve which approaches each of the orthogonal axes asymptotically. All segments of the curve are self-similar (subject to appropriate scaling factors). When plotted in a log-log plot, the distribution is represented by a straight line.
     −
当在线性轴上绘制时,分布曲线为熟悉的J形曲线,该曲线[[渐近]]地接近每个正交轴。曲线的所有段都是自相似的(取决于适当的比例因子)。在[[双对数图]]中绘制时,分布用直线表示。
+
当在线性轴上绘制时,我们默认分布曲线为我们熟知的的J形曲线,该曲线[[渐近]]地接近每个正交轴。曲线的所有段都是自相似的(取决于适当的比例因子)。在[[双对数图|双对数图log-log plot]]中绘制时,分布则是直线表示。
    
==Properties性质==
 
==Properties性质==
第157行: 第85行:  
===Moments and characteristic function矩与特征函数===
 
===Moments and characteristic function矩与特征函数===
   −
* The [[expected value]] of a [[random variable]] following a Pareto distribution is
+
*服从帕累托分布的随机变量的'''期望值expected value'''为:
*服从帕累托分布的[[随机变量] ]的[ [期望值] ]为
  −
:
  −
 
   
:: <math>\operatorname{E}(X)= \begin{cases} \infty & \alpha\le 1, \\
 
:: <math>\operatorname{E}(X)= \begin{cases} \infty & \alpha\le 1, \\
   第175行: 第100行:  
\end{cases}</math>
 
\end{cases}</math>
   −
\end{cases}</math>
+
* 服从帕累托分布的随机变量的'''方差variance'''
 
  −
结束{ cases } </math >
  −
 
  −
* The [[variance]] of a [[random variable]] following a Pareto distribution is
  −
* 服从帕累托分布的[[随机变量] ]的[ [方差] ]
           −
:: <math>\operatorname{Var}(X)= \begin{cases}
+
::<math>\operatorname{Var}(X)= \begin{cases}
    
  <math>\operatorname{Var}(X)= \begin{cases}
 
  <math>\operatorname{Var}(X)= \begin{cases}
第202行: 第122行:  
左(frac { x _ mathrm { m }{ alpha-1}右) ^ 2 frac { alpha-2} & alpha > 2。
 
左(frac { x _ mathrm { m }{ alpha-1}右) ^ 2 frac { alpha-2} & alpha > 2。
   −
\end{cases}</math>
+
\end{cases}</math><br />
 
  −
\end{cases}</math>
  −
 
  −
结束{ cases } </math >
  −
 
  −
 
  −
 
  −
: (If ''α'' ≤ 1, the variance does not exist.)
  −
 
  −
(If α ≤ 1, the variance does not exist.)
      
(如果 α ≤1,方差不存在.)
 
(如果 α ≤1,方差不存在.)
   −
* The raw [[moment (mathematics)|moments]] are
+
*原始的[[矩(数学)|矩]]raw moments为
*原始的[[矩(数学)|矩]]
         
:: <math>\mu_n'= \begin{cases} \infty & \alpha\le n, \\ \frac{\alpha x_\mathrm{m}^n}{\alpha-n} & \alpha>n. \end{cases}</math>
 
:: <math>\mu_n'= \begin{cases} \infty & \alpha\le n, \\ \frac{\alpha x_\mathrm{m}^n}{\alpha-n} & \alpha>n. \end{cases}</math>
  −
\mu_n'= \begin{cases} \infty & \alpha\le n, \\ \frac{\alpha x_\mathrm{m}^n}{\alpha-n} & \alpha>n. \end{cases}
  −
  −
N’ = begin { cases } infty & alpha le n,frac { alpha x mathrm { m } ^ n }{ alpha-n } & alpha > n。结束{ cases }
      
* The [[Moment-generating function|moment generating function]] is only defined for non-positive values ''t''&nbsp;≤&nbsp;0 as
 
* The [[Moment-generating function|moment generating function]] is only defined for non-positive values ''t''&nbsp;≤&nbsp;0 as
*[[力矩生成函数|力矩生成函数]]仅针对非正值“t”≤0定义为
+
*仅针对非正''t≤0''的[[力矩生成函数|力矩生成函数]][[Moment-generating function|moment generating function]]定义为
       
::<math>M\left(t;\alpha,x_\mathrm{m}\right) = \operatorname{E} \left [e^{tX} \right ] = \alpha(-x_\mathrm{m} t)^\alpha\Gamma(-\alpha,-x_\mathrm{m} t)</math>
 
::<math>M\left(t;\alpha,x_\mathrm{m}\right) = \operatorname{E} \left [e^{tX} \right ] = \alpha(-x_\mathrm{m} t)^\alpha\Gamma(-\alpha,-x_\mathrm{m} t)</math>
  −
M\left(t;\alpha,x_\mathrm{m}\right) = \operatorname{E} \left [e^{tX} \right ] = \alpha(-x_\mathrm{m} t)^\alpha\Gamma(-\alpha,-x_\mathrm{m} t)
  −
  −
M left (t; alpha,x _ mathrm { m } right) = operatorname { e } left [ e ^ { tX } right ] = alpha (- x _ mathrm { m } t) ^ alpha Gamma (- alpha,-x _ mathrm { m } t)
      
::<math>M\left(0,\alpha,x_\mathrm{m}\right)=1.</math>
 
::<math>M\left(0,\alpha,x_\mathrm{m}\right)=1.</math>
   −
M\left(0,\alpha,x_\mathrm{m}\right)=1.
+
*[[特征函数(概率论)|特征函数]]characteristic function由以下给出
 
  −
M 左(0,alpha,x _ mathrm { m }右) = 1。
  −
 
  −
* The [[Characteristic function (probability theory)|characteristic function]] is given by
  −
*[[特征函数(概率论)|特征函数]]由以下给出
         
:: <math>\varphi(t;\alpha,x_\mathrm{m})=\alpha(-ix_\mathrm{m} t)^\alpha\Gamma(-\alpha,-ix_\mathrm{m} t),</math>
 
:: <math>\varphi(t;\alpha,x_\mathrm{m})=\alpha(-ix_\mathrm{m} t)^\alpha\Gamma(-\alpha,-ix_\mathrm{m} t),</math>
   −
\varphi(t;\alpha,x_\mathrm{m})=\alpha(-ix_\mathrm{m} t)^\alpha\Gamma(-\alpha,-ix_\mathrm{m} t),
+
其中 Γ(a,&nbsp;x)是'''不完全伽马函数incomplete gamma function'''。
 
  −
Varphi (t; alpha,x _ mathrm { m }) = alpha (- ix _ mathrm { m } t) ^ alpha Gamma (- alpha,-ix _ mathrm { m } t) ,
  −
 
  −
 
  −
 
  −
: where Γ(''a'',&nbsp;''x'') is the [[incomplete gamma function]].
  −
 
  −
where Γ(a,&nbsp;x) is the incomplete gamma function.
  −
 
  −
其中 Γ(a,&nbsp;x)是不完全伽马函数。
  −
 
      +
其系数可能被矩量法method of moments来解<ref>S. Hussain, S.H. Bhatti (2018). 
   −
The parameters may be solved using the [[method of moments]].
+
[https://www.researchgate.net/publication/322758024_Parameter_estimation_of_Pareto_distribution_Some_modified_moment_estimators Parameter estimation of Pareto distribution: Some modified moment estimators]. ''Maejo International Journal of Science and Technology'' 12(1):11-27</ref>。<!-- :
 
  −
系数可能被矩量法来解<!-- :
      
The parameters may be solved using the method of moments.<!-- :
 
The parameters may be solved using the method of moments.<!-- :
第282行: 第166行:  
Beta = mean * Sqr (mean ^ 2 + var)/(Sqr (var) + Sqr (mean ^ 2 + var)) -- >  
 
Beta = mean * Sqr (mean ^ 2 + var)/(Sqr (var) + Sqr (mean ^ 2 + var)) -- >  
   −
<ref>S. Hussain, S.H. Bhatti (2018). 
  −
  −
[https://www.researchgate.net/publication/322758024_Parameter_estimation_of_Pareto_distribution_Some_modified_moment_estimators Parameter estimation of Pareto distribution: Some modified moment estimators].  ''Maejo International Journal of Science and Technology'' 12(1):11-27</ref>
        第929行: 第810行:  
那么“W”具有Feller-Pareto分布FP(''μ'', ''σ'', ''γ'', ''γ''<sub>1</sub>, ''γ''<sub>2</sub>)。<ref name=arnold/>
 
那么“W”具有Feller-Pareto分布FP(''μ'', ''σ'', ''γ'', ''γ''<sub>1</sub>, ''γ''<sub>2</sub>)。<ref name=arnold/>
 
  <math>
 
  <math>
+
 
《数学》
+
  《数学》
+
 
+
 
+
 
\begin{align}
+
  \begin{align}
+
 
开始{ align }
+
  开始{ align }
+
 
If <math>U_1 \sim \Gamma(\delta_1, 1)</math> and <math>U_2 \sim \Gamma(\delta_2, 1)</math> are independent [[Gamma distribution|Gamma variables]], another construction of a Feller–Pareto (FP) variable is<ref>{{cite book |last=Chotikapanich |first=Duangkamon |title=Modeling Income Distributions and Lorenz Curves |chapter=Chapter 7: Pareto and Generalized Pareto Distributions |date=16 September 2008 |pages=121–22 |isbn=9780387727967 |chapter-url=https://books.google.com/books?id=fUJZZLj1kbwC}}</ref>
+
  If <math>U_1 \sim \Gamma(\delta_1, 1)</math> and <math>U_2 \sim \Gamma(\delta_2, 1)</math> are independent [[Gamma distribution|Gamma variables]], another construction of a Feller–Pareto (FP) variable is<ref>{{cite book |last=Chotikapanich |first=Duangkamon |title=Modeling Income Distributions and Lorenz Curves |chapter=Chapter 7: Pareto and Generalized Pareto Distributions |date=16 September 2008 |pages=121–22 |isbn=9780387727967 |chapter-url=https://books.google.com/books?id=fUJZZLj1kbwC}}</ref>
    
如果<math>U_1 \sim \Gamma(\delta_1, 1)</math> 和 <math>U_2 \sim \Gamma(\delta_2, 1)</math>是相互独立的[[伽马分布|伽马变量],Feller-Pareto(FP)变量的另一个构造是<ref>{{cite book |last=Chotikapanich |first=Duangkamon |title=Modeling Income Distributions and Lorenz Curves |chapter=Chapter 7: Pareto and Generalized Pareto Distributions |date=16 September 2008 |pages=121–22 |isbn=9780387727967 |chapter-url=https://books.google.com/books?id=fUJZZLj1kbwC}}</ref>
 
如果<math>U_1 \sim \Gamma(\delta_1, 1)</math> 和 <math>U_2 \sim \Gamma(\delta_2, 1)</math>是相互独立的[[伽马分布|伽马变量],Feller-Pareto(FP)变量的另一个构造是<ref>{{cite book |last=Chotikapanich |first=Duangkamon |title=Modeling Income Distributions and Lorenz Curves |chapter=Chapter 7: Pareto and Generalized Pareto Distributions |date=16 September 2008 |pages=121–22 |isbn=9780387727967 |chapter-url=https://books.google.com/books?id=fUJZZLj1kbwC}}</ref>
567

个编辑

导航菜单