更改

跳到导航 跳到搜索
删除13字节 、 2022年6月19日 (日) 11:06
第64行: 第64行:  
=== 类型 ===
 
=== 类型 ===
 
==== 相互作用的量子谐振子的高斯态 ====
 
==== 相互作用的量子谐振子的高斯态 ====
高斯态是连续变量量子系统的一类典型态。<ref name=":20" />尽管它们现在可以在最先进的光学平台上创建和操作,这些平台对去相干具有天然的鲁棒性<ref name=":21">{{Cite journal|last1=Roslund|first1=Jonathan|last2=de Araújo|first2=Renné Medeiros|last3=Jiang|first3=Shifeng|last4=Fabre|first4=Claude|last5=Treps|first5=Nicolas|date=2013-12-15|title=Wavelength-multiplexed quantum networks with ultrafast frequency combs|url=https://www.nature.com/articles/nphoton.2013.340|journal=Nature Photonics|language=en|volume=8|issue=2|pages=109–112|doi=10.1038/nphoton.2013.340|arxiv=1307.1216|s2cid=2328402|issn=1749-4893}}</ref>,但众所周知,它们对于通用量子计算来说是不够的,因为保持状态的高斯性质的变换是线性的。<ref name=":22">{{Cite journal|last1=Bartlett|first1=Stephen D.|last2=Sanders|first2=Barry C.|last3=Braunstein|first3=Samuel L.|last4=Nemoto|first4=Kae|date=2002-02-14|title=Efficient Classical Simulation of Continuous Variable Quantum Information Processes|url=https://link.aps.org/doi/10.1103/PhysRevLett.88.097904|journal=Physical Review Letters|volume=88|issue=9|pages=097904|doi=10.1103/PhysRevLett.88.097904|pmid=11864057|arxiv=quant-ph/0109047|bibcode=2002PhRvL..88i7904B|s2cid=2161585}}</ref>正常情况下,线性动力学也不足以进行非平凡的储层计算。然而,通过考虑一个由相互作用的量子谐振子组成的网络,并通过周期性的振子子集的状态重置注入输入,可以将这种动力学应用于储备池计算目的。选择一个合适的振荡器子集的状态如何取决于输入,其余振荡器的观测量可以成为非线性函数的输入适合于储备池计算; 事实上,由于这些函数的性质,甚至通用储备池计算成为可能,通过结合观测量和一个多项式读出函数。<ref name=":5" />原则上,这种储备池计算机可以通过受控的多模光学参量过程实现<ref name=":23">{{Cite journal|last1=Nokkala|first1=J.|last2=Arzani|first2=F.|last3=Galve|first3=F.|last4=Zambrini|first4=R.|last5=Maniscalco|first5=S.|last6=Piilo|first6=J.|last7=Treps|first7=N.|last8=Parigi|first8=V.|date=2018-05-09|title=Reconfigurable optical implementation of quantum complex networks|url=https://doi.org/10.1088%2F1367-2630%2Faabc77|journal=New Journal of Physics|language=en|volume=20|issue=5|pages=053024|doi=10.1088/1367-2630/aabc77|arxiv=1708.08726|bibcode=2018NJPh...20e3024N|s2cid=119091176|issn=1367-2630}}</ref>,但是从系统中有效地提取输出是一个挑战,特别是在必须考虑测量反作用的量子体制中。
+
高斯态是连续变量量子系统的一类典型态。尽管它们现在可以在最先进的光学平台上创建和操作,这些平台对去相干具有天然的鲁棒性<ref name=":21">{{Cite journal|last1=Roslund|first1=Jonathan|last2=de Araújo|first2=Renné Medeiros|last3=Jiang|first3=Shifeng|last4=Fabre|first4=Claude|last5=Treps|first5=Nicolas|date=2013-12-15|title=Wavelength-multiplexed quantum networks with ultrafast frequency combs|url=https://www.nature.com/articles/nphoton.2013.340|journal=Nature Photonics|language=en|volume=8|issue=2|pages=109–112|doi=10.1038/nphoton.2013.340|arxiv=1307.1216|s2cid=2328402|issn=1749-4893}}</ref>,但众所周知,它们对于通用量子计算来说是不够的,因为保持状态的高斯性质的变换是线性的。<ref name=":22">{{Cite journal|last1=Bartlett|first1=Stephen D.|last2=Sanders|first2=Barry C.|last3=Braunstein|first3=Samuel L.|last4=Nemoto|first4=Kae|date=2002-02-14|title=Efficient Classical Simulation of Continuous Variable Quantum Information Processes|url=https://link.aps.org/doi/10.1103/PhysRevLett.88.097904|journal=Physical Review Letters|volume=88|issue=9|pages=097904|doi=10.1103/PhysRevLett.88.097904|pmid=11864057|arxiv=quant-ph/0109047|bibcode=2002PhRvL..88i7904B|s2cid=2161585}}</ref>正常情况下,线性动力学也不足以进行非平凡的储层计算。然而,通过考虑一个由相互作用的量子谐振子组成的网络,并通过周期性的振子子集的状态重置注入输入,可以将这种动力学应用于储备池计算目的。选择一个合适的振荡器子集的状态如何取决于输入,其余振荡器的观测量可以成为非线性函数的输入适合于储备池计算; 事实上,由于这些函数的性质,甚至通用储备池计算成为可能,通过结合观测量和一个多项式读出函数。<ref name=":5" />原则上,这种储备池计算机可以通过受控的多模光学参量过程实现<ref name=":23">{{Cite journal|last1=Nokkala|first1=J.|last2=Arzani|first2=F.|last3=Galve|first3=F.|last4=Zambrini|first4=R.|last5=Maniscalco|first5=S.|last6=Piilo|first6=J.|last7=Treps|first7=N.|last8=Parigi|first8=V.|date=2018-05-09|title=Reconfigurable optical implementation of quantum complex networks|url=https://doi.org/10.1088%2F1367-2630%2Faabc77|journal=New Journal of Physics|language=en|volume=20|issue=5|pages=053024|doi=10.1088/1367-2630/aabc77|arxiv=1708.08726|bibcode=2018NJPh...20e3024N|s2cid=119091176|issn=1367-2630}}</ref>,但是从系统中有效地提取输出是一个挑战,特别是在必须考虑测量反作用的量子体制中。
    +
<br>
    
==== 2-D 量子点格子 ====
 
==== 2-D 量子点格子 ====
7,129

个编辑

导航菜单