第1行: |
第1行: |
| + | 因果森林 (Causal Forest) 是由 Wager and Athey [2017] 提出的异质因果效应估计算法。该算法本质上可以理解成通过子采样生成大量不同的因果树,然后取这些树的平均。 类似于随机森林算法,因果森林可以被理解成一种近邻匹配算法,但是用数据驱动的方法来确定样本之间的相似度。 |
| | | |
| + | == 介绍 == |
| + | |
| + | |
| + | |
| + | == 算法 == |
| + | |
| + | |
| + | .... |
| + | |
| + | == 算法实现 == |
| + | |
| + | |
| + | Python 包 econml 和 R 包 grf 都有实现该算法。 |
| + | |
| + | == 参考文献 == |
| + | |
| + | |
| + | === Recursive Partitioning for Heterogeneous Causal Effects - arXiv === |
| + | ''[Submitted on 5 Apr 2015 (v1), last revised 30 Dec 2015 (this version, v3)]'' |
| + | |
| + | === Estimation and Inference of Heterogeneous Treatment Effects ... === |
| + | ''[Submitted on 14 Oct 2015 (v1), last revised 10 Jul 2017 (this version, v4)]'' |
| + | |
| + | === Generalized Random Forests - arXiv === |
| + | ''[Submitted on 5 Oct 2016 (v1), last revised 5 Apr 2018 (this version, v4)]'' |
| + | |
| + | === Machine Learning Methods Economists Should Know About === |
| + | ''[Submitted on 24 Mar 2019]'' |
| + | |
| + | == 编者推荐 == |