更改
跳到导航
跳到搜索
←上一编辑
下一编辑→
苏珊·卡尔顿·阿西 Susan Carleton Athey
(查看源代码)
2022年7月11日 (一) 11:44的版本
添加2,140字节
、
2022年7月11日 (一) 11:44
→编者推荐
第156行:
第156行:
−
<br>
+
+
[https://pattern.swarma.org/study_group_issue/212 集智×DataFun合作论坛:因果推断在工业界的应用 | 因果科学第三季第十九期 - 因果科学与Causal AI读书会第三季]
+
+
估计异质因果效应,即条件平均因果效应(Conditional Average Causal Effect, CATE),一直以来都是因果推断研究的重要组成。基于树模型的估计 CATE 的方法在学术界被广泛研究,其中最有代表性的是斯坦福大学经济学教授 Susan Athey 的系列工作,包括因果树、因果森林和广义随机森林。广义随机森林 (因果森林是它的特例)和普通的随机森林最大的区别在于,它是从局部加权估计的角度而不是集成方法的角度来解释的。这种基于森林的临近权重让其相对于其它方法具备灵活性,自适应性和易用性等优点。此外, 它基于局部矩方程的估计量还具备良好的统计性质。近年来,它们更是被广泛应用在工业界互联网商业平台的营销活动中, 可以有效地提高用户参与度和平台收入,例如阿里巴巴和亚马逊的优惠券, 共享乘车优步和滴滴的折扣券,抖音的视频观看金币激励等。估计用户对激励的敏感度 (即 CATE) 是个性化激励关键的第一步。所以因果森林是同时在学术界和工业界都是非常有影响力的工作。
+
+
=== 相关路径 ===
+
*[https://pattern.swarma.org/path?id=99 因果科学与Casual AI读书会必读参考文献列表],这个是根据读书会中解读的论文,做的一个分类和筛选,方便大家梳理整个框架和内容。
+
*[https://pattern.swarma.org/path?id=9 因果推断方法概述],这个路径对因果在哲学方面的探讨,以及因果在机器学习方面应用的分析。
+
*[https://pattern.swarma.org/path?id=90 因果科学和 Causal AI入门路径],这条路径解释了因果科学是什么以及它的发展脉络。此路径将分为三个部分进行展开,第一部分是因果科学的基本定义及其哲学基础,第二部分是统计领域中的因果推断,第三个部分是机器学习中的因果(Causal AI)。
----
----
本中文词条由因果科学读书会词条梳理志愿者我是猫(74989)翻译审校、[[用户:薄荷|薄荷]]编辑,欢迎在讨论页面留言。
本中文词条由因果科学读书会词条梳理志愿者我是猫(74989)翻译审校、[[用户:薄荷|薄荷]]编辑,欢迎在讨论页面留言。
我是猫
316
个编辑
导航菜单
个人工具
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
集智百科
集智主页
集智斑图
集智学园
最近更改
所有页面
帮助
工具
特殊页面
可打印版本