更改

跳到导航 跳到搜索
删除111字节 、 2022年7月23日 (六) 17:42
无编辑摘要
第73行: 第73行:  
[[Image:SynapseSchematic en.svg|thumb|right|300px|When an action potential arrives at the end of the pre-synaptic axon (top), it causes the release of [[neurotransmitter]] molecules that open ion channels in the post-synaptic neuron (bottom). The combined [[excitatory postsynaptic potential|excitatory]] and [[inhibitory postsynaptic potential]]s of such inputs can begin a new action potential in the post-synaptic neuron.
 
[[Image:SynapseSchematic en.svg|thumb|right|300px|When an action potential arrives at the end of the pre-synaptic axon (top), it causes the release of [[neurotransmitter]] molecules that open ion channels in the post-synaptic neuron (bottom). The combined [[excitatory postsynaptic potential|excitatory]] and [[inhibitory postsynaptic potential]]s of such inputs can begin a new action potential in the post-synaptic neuron.
   −
当动作电位到达突触前轴突(上部)的末端时,它会导致神经递质分子的释放,这些分子打开突触后神经元中的离子通道(底部)。这些输入的兴奋性和抑制性突触后电位的组合可以在突触后神经元中开始新的动作电位。|链接=Special:FilePath/SynapseSchematic_en.svg]]
+
当动作电位传至突触前轴突末端(上部)时,它会导致神经递质分子的释放,这些分子打开突触后神经元中的离子通道(底部)。这些输入引起的兴奋性和抑制性突触后电位,在突触后神经元中整合引起新的动作电位。|链接=Special:FilePath/SynapseSchematic_en.svg]]
   −
在考虑动作电位沿轴突的传播并止于突触结之前,有必要考虑一下在轴丘引发动作电位的方法。基本的要求就是把轴丘的膜电位抬高到动作电位发放的域值之上。存在几种去极化的方式。
+
在认识动作电位沿轴突的传播并止于突触结之前,可以了解一下动作电位是如何轴丘处引发的。基本的要求就是把轴丘的膜电位抬高到动作电位发放的域值之上。存在几种去极化的方式。
 
===动力学===
 
===动力学===
 
Action potentials are most commonly initiated by [[excitatory postsynaptic potential]]s from a presynaptic neuron.{{sfnm|1a1=Bullock|1a2=Orkand|1a3=Grinnell|1y=1977|1pp=177–240|2a1=Schmidt-Nielsen|2y=1997|2pp=490-499|3a1=Stevens|3y=1966|3p=47–68}} Typically, [[neurotransmitter]] molecules are released by the [[synapse|presynaptic]] [[neuron]]. These neurotransmitters then bind to receptors on the postsynaptic cell. This binding opens various types of [[ion channel]]s. This opening has the further effect of changing the local permeability of the [[cell membrane]] and, thus, the membrane potential. If the binding increases the voltage (depolarizes the membrane), the synapse is excitatory. If, however, the binding decreases the voltage (hyperpolarizes the membrane), it is inhibitory. Whether the voltage is increased or decreased, the change propagates passively to nearby regions of the membrane (as described by the [[cable equation]] and its refinements). Typically, the voltage stimulus decays exponentially with the distance from the synapse and with time from the binding of the neurotransmitter. Some fraction of an excitatory voltage may reach the [[axon hillock]] and may (in rare cases) depolarize the membrane enough to provoke a new action potential. More typically, the excitatory potentials from several synapses must [[spatial summation|work together]] at [[temporal summation|nearly the same time]] to provoke a new action potential. Their joint efforts can be thwarted, however, by the counteracting [[inhibitory postsynaptic potential]]s.
 
Action potentials are most commonly initiated by [[excitatory postsynaptic potential]]s from a presynaptic neuron.{{sfnm|1a1=Bullock|1a2=Orkand|1a3=Grinnell|1y=1977|1pp=177–240|2a1=Schmidt-Nielsen|2y=1997|2pp=490-499|3a1=Stevens|3y=1966|3p=47–68}} Typically, [[neurotransmitter]] molecules are released by the [[synapse|presynaptic]] [[neuron]]. These neurotransmitters then bind to receptors on the postsynaptic cell. This binding opens various types of [[ion channel]]s. This opening has the further effect of changing the local permeability of the [[cell membrane]] and, thus, the membrane potential. If the binding increases the voltage (depolarizes the membrane), the synapse is excitatory. If, however, the binding decreases the voltage (hyperpolarizes the membrane), it is inhibitory. Whether the voltage is increased or decreased, the change propagates passively to nearby regions of the membrane (as described by the [[cable equation]] and its refinements). Typically, the voltage stimulus decays exponentially with the distance from the synapse and with time from the binding of the neurotransmitter. Some fraction of an excitatory voltage may reach the [[axon hillock]] and may (in rare cases) depolarize the membrane enough to provoke a new action potential. More typically, the excitatory potentials from several synapses must [[spatial summation|work together]] at [[temporal summation|nearly the same time]] to provoke a new action potential. Their joint efforts can be thwarted, however, by the counteracting [[inhibitory postsynaptic potential]]s.
第85行: 第85行:  
神经传导也可以通过电突触发生。由于可兴奋细胞之间以缝隙连接的形式存在直接联系,动作电位可以从一个细胞直接传递到下一个细胞。离子在细胞之间的自由流动使得非化学介导的快速传输成为可能。整流通道确保动作电位通过电突触向一个方向移动。电突触存在于所有神经系统中,包括人脑,尽管它们只是少数。
 
神经传导也可以通过电突触发生。由于可兴奋细胞之间以缝隙连接的形式存在直接联系,动作电位可以从一个细胞直接传递到下一个细胞。离子在细胞之间的自由流动使得非化学介导的快速传输成为可能。整流通道确保动作电位通过电突触向一个方向移动。电突触存在于所有神经系统中,包括人脑,尽管它们只是少数。
   −
==="All-or-none" principle===
+
==="All-or-none" principle“全或无”原理===
{{Main|All-or-none law}}
   
The [[amplitude]] of an action potential is independent of the amount of current that produced it. In other words, larger currents do not create larger action potentials. Therefore, action potentials are said to be [[All-or-none law|all-or-none]] signals, since either they occur fully or they do not occur at all.<ref name=" Sasaki " group=lower-alpha>Sasaki, T., Matsuki, N., Ikegaya, Y. 2011 Action-potential modulation during axonal conduction Science 331 (6017), pp. 599–601</ref><ref name="Aur" group=lower-alpha>{{cite journal | vauthors = Aur D, Connolly CI, Jog MS | title = Computing spike directivity with tetrodes | journal = Journal of Neuroscience Methods | volume = 149 | issue = 1 | pages = 57–63 | date = November 2005 | pmid = 15978667 | doi = 10.1016/j.jneumeth.2005.05.006 | s2cid = 34131910 }}</ref><ref name="Aur, Jog" group=lower-alpha>Aur D., Jog, MS., 2010 Neuroelectrodynamics: Understanding the brain language, IOS Press, 2010. {{DOI|10.3233/978-1-60750-473-3-i}}</ref> This is in contrast to [[receptor potential]]s, whose amplitudes are dependent on the intensity of a stimulus.{{sfn|Purves|Augustine|Fitzpatrick|Hall|2008|pp=26–28}} In both cases, the [[frequency]] of action potentials is correlated with the intensity of a stimulus.
 
The [[amplitude]] of an action potential is independent of the amount of current that produced it. In other words, larger currents do not create larger action potentials. Therefore, action potentials are said to be [[All-or-none law|all-or-none]] signals, since either they occur fully or they do not occur at all.<ref name=" Sasaki " group=lower-alpha>Sasaki, T., Matsuki, N., Ikegaya, Y. 2011 Action-potential modulation during axonal conduction Science 331 (6017), pp. 599–601</ref><ref name="Aur" group=lower-alpha>{{cite journal | vauthors = Aur D, Connolly CI, Jog MS | title = Computing spike directivity with tetrodes | journal = Journal of Neuroscience Methods | volume = 149 | issue = 1 | pages = 57–63 | date = November 2005 | pmid = 15978667 | doi = 10.1016/j.jneumeth.2005.05.006 | s2cid = 34131910 }}</ref><ref name="Aur, Jog" group=lower-alpha>Aur D., Jog, MS., 2010 Neuroelectrodynamics: Understanding the brain language, IOS Press, 2010. {{DOI|10.3233/978-1-60750-473-3-i}}</ref> This is in contrast to [[receptor potential]]s, whose amplitudes are dependent on the intensity of a stimulus.{{sfn|Purves|Augustine|Fitzpatrick|Hall|2008|pp=26–28}} In both cases, the [[frequency]] of action potentials is correlated with the intensity of a stimulus.
   −
<nowiki>= = “全或无”原理 = = =</nowiki>
+
动作电位的幅度与产生动作电位的电流量无关。换句话说,更大的电流不会产生更大的动作电位。因此,动作电位被称为全或无信号,因为它们要么完全发生,要么根本不发生。<ref name="Sasaki" group="lower-alpha" /><ref name="Aur" group="lower-alpha" /><ref name="Aur, Jog" group="lower-alpha" /> 这与受体电位不同,受体电位的振幅取决于刺激的强度。在这两种情况下,动作电位的频率都与刺激的强度相关。
 
  −
动作电位的振幅与产生动作电位的电流量无关。换句话说,更大的电流不会产生更大的动作电位。因此,动作电位被称为全或无信号,因为它们要么完全发生,要么根本不发生 <ref name="Sasaki" group="lower-alpha" /><ref name="Aur" group="lower-alpha" /><ref name="Aur, Jog" group="lower-alpha" /> 。这与受体电位相反,受体电位的振幅取决于刺激的强度。在这两种情况下,动作电位的频率都与刺激的强度相关。
  −
 
   
===Sensory neurons 感觉神经元===
 
===Sensory neurons 感觉神经元===
{{Main|Sensory neuron}}
  −
   
In [[sensory neurons]], an external signal such as pressure, temperature, light, or sound is coupled with the opening and closing of [[ion channels]], which in turn alter the ionic permeabilities of the membrane and its voltage.{{sfnm|1a1=Schmidt-Nielsen|1y=1997|1pp=535–580|2a1=Bullock|2a2=Orkand|2a3=Grinnell|2y=1977|2pp=49–56, 76–93, 247–255|3a1=Stevens|3y=1966|3pp=69–79}} These voltage changes can again be excitatory (depolarizing) or inhibitory (hyperpolarizing) and, in some sensory neurons, their combined effects can depolarize the axon hillock enough to provoke action potentials. Some examples in humans include the [[olfactory receptor neuron]] and [[Meissner's corpuscle]], which are critical for the sense of [[olfaction|smell]] and [[somatosensory system|touch]], respectively. However, not all sensory neurons convert their external signals into action potentials; some do not even have an axon.{{sfnm|1a1=Bullock|1a2=Orkand|1a3=Grinnell|1y=1977|1pp=53|2a1=Bullock|2a2=Orkand|2a3=Grinnell|2y=1977|2pp=122–124}} Instead, they may convert the signal into the release of a [[neurotransmitter]], or into continuous [[receptor potential|graded potentials]], either of which may stimulate subsequent neuron(s) into firing an action potential. For illustration, in the human [[ear]], [[hair cell]]s convert the incoming sound into the opening and closing of [[stretch-activated ion channel|mechanically gated ion channels]], which may cause [[neurotransmitter]] molecules to be released. In similar manner, in the human [[retina]], the initial [[photoreceptor cell]]s and the next layer of cells (comprising [[bipolar cell]]s and [[horizontal cell]]s) do not produce action potentials; only some [[amacrine cell]]s and the third layer, the [[Retinal ganglion cell|ganglion cell]]s, produce action potentials, which then travel up the [[optic nerve]].
 
In [[sensory neurons]], an external signal such as pressure, temperature, light, or sound is coupled with the opening and closing of [[ion channels]], which in turn alter the ionic permeabilities of the membrane and its voltage.{{sfnm|1a1=Schmidt-Nielsen|1y=1997|1pp=535–580|2a1=Bullock|2a2=Orkand|2a3=Grinnell|2y=1977|2pp=49–56, 76–93, 247–255|3a1=Stevens|3y=1966|3pp=69–79}} These voltage changes can again be excitatory (depolarizing) or inhibitory (hyperpolarizing) and, in some sensory neurons, their combined effects can depolarize the axon hillock enough to provoke action potentials. Some examples in humans include the [[olfactory receptor neuron]] and [[Meissner's corpuscle]], which are critical for the sense of [[olfaction|smell]] and [[somatosensory system|touch]], respectively. However, not all sensory neurons convert their external signals into action potentials; some do not even have an axon.{{sfnm|1a1=Bullock|1a2=Orkand|1a3=Grinnell|1y=1977|1pp=53|2a1=Bullock|2a2=Orkand|2a3=Grinnell|2y=1977|2pp=122–124}} Instead, they may convert the signal into the release of a [[neurotransmitter]], or into continuous [[receptor potential|graded potentials]], either of which may stimulate subsequent neuron(s) into firing an action potential. For illustration, in the human [[ear]], [[hair cell]]s convert the incoming sound into the opening and closing of [[stretch-activated ion channel|mechanically gated ion channels]], which may cause [[neurotransmitter]] molecules to be released. In similar manner, in the human [[retina]], the initial [[photoreceptor cell]]s and the next layer of cells (comprising [[bipolar cell]]s and [[horizontal cell]]s) do not produce action potentials; only some [[amacrine cell]]s and the third layer, the [[Retinal ganglion cell|ganglion cell]]s, produce action potentials, which then travel up the [[optic nerve]].
   −
在感觉神经元中,外部信号如压力、温度、光或声音与离子通道的开启和关闭相耦合,这反过来又改变了膜的离子通透性及其电压。这些电压变化可以是兴奋性(去极化)或抑制性(超极化),在某些感觉神经元中,它们的联合作用可以使轴突丘去极化,足以激发动作电位。人类的一些例子包括嗅觉受器神经元和迈斯纳氏小体,它们分别对嗅觉和触觉至关重要。然而,并不是所有的感觉神经元都将外部信号转换成动作电位,有些甚至没有轴突。相反,他们可以将信号转换成一种神经递质的释放,或者转换成连续分级的电位,这两种电位都可以刺激后续的神经元发出动作电位。例如,在人耳中,毛细胞将传入的声音转换成机械门控离子通道的开闭,这可能导致神经递质分子的释放。同样,在人类视网膜中,最初的感光细胞和下一层细胞(包括双极细胞和水平细胞)不产生动作电位,只有一些无长突细胞和第三层神经节细胞产生动作电位,然后动作电位沿视神经传递。
+
在感觉神经元中,外部信号如压力、温度、光或声音与离子通道的开启和关闭相耦合,这反过来又改变了膜的离子通透性及其电压。这些电压变化可以是兴奋性(去极化)或抑制性(超极化),在某些感觉神经元中,它们的联合作用可以使轴突丘去极化,足以激发动作电位。人类的一些例子包括嗅觉受器神经元和迈斯纳氏小体,它们分别对嗅觉和触觉至关重要。然而,并不是所有的感觉神经元都将外部信号转换成动作电位,有些甚至没有轴突。相反,他们可以将信号转换成一种神经递质的释放,或者转换成连续级量的电位,这两种电位都可以刺激后续的神经元发出动作电位。例如,在人耳中,毛细胞将传入的声音转换成机械门控离子通道的开闭,这可能导致神经递质分子的释放。同样,在人类视网膜中,最初的感光细胞和下一层的细胞(包括双极细胞和水平细胞)不产生动作电位,只有一些无长突细胞和第三层的神经节细胞产生动作电位,然后动作电位沿视神经传递。
    
===Pacemaker potentials 起搏电位===
 
===Pacemaker potentials 起搏电位===
{{Main|Pacemaker potential}}
   
[[文件:Pacemaker potential.svg.png|替代=|缩略图|In [[pacemaker potential]]s, the cell spontaneously depolarizes (straight line with upward slope) until it fires an action potential.
 
[[文件:Pacemaker potential.svg.png|替代=|缩略图|In [[pacemaker potential]]s, the cell spontaneously depolarizes (straight line with upward slope) until it fires an action potential.
   第107行: 第100行:  
In sensory neurons, action potentials result from an external stimulus. However, some excitable cells require no such stimulus to fire: They spontaneously depolarize their axon hillock and fire action potentials at a regular rate, like an internal clock. The voltage traces of such cells are known as [[pacemaker potential]]s. The [[cardiac pacemaker]] cells of the [[sinoatrial node]] in the [[heart]] provide a good example.<ref name="noble_1960" group=lower-alpha >{{cite journal | vauthors = Noble D | title = Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations | journal = Nature | volume = 188 | issue = 4749 | pages = 495–7 | date = November 1960 | pmid = 13729365 | doi = 10.1038/188495b0 | bibcode = 1960Natur.188..495N | s2cid = 4147174 }}</ref> Although such pacemaker potentials have a [[neural oscillation|natural rhythm]], it can be adjusted by external stimuli; for instance, [[heart rate]] can be altered by pharmaceuticals as well as signals from the [[sympathetic nervous system|sympathetic]] and [[parasympathetic nervous system|parasympathetic]] nerves. The external stimuli do not cause the cell's repetitive firing, but merely alter its timing. In some cases, the regulation of frequency can be more complex, leading to patterns of action potentials, such as [[bursting]].
 
In sensory neurons, action potentials result from an external stimulus. However, some excitable cells require no such stimulus to fire: They spontaneously depolarize their axon hillock and fire action potentials at a regular rate, like an internal clock. The voltage traces of such cells are known as [[pacemaker potential]]s. The [[cardiac pacemaker]] cells of the [[sinoatrial node]] in the [[heart]] provide a good example.<ref name="noble_1960" group=lower-alpha >{{cite journal | vauthors = Noble D | title = Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations | journal = Nature | volume = 188 | issue = 4749 | pages = 495–7 | date = November 1960 | pmid = 13729365 | doi = 10.1038/188495b0 | bibcode = 1960Natur.188..495N | s2cid = 4147174 }}</ref> Although such pacemaker potentials have a [[neural oscillation|natural rhythm]], it can be adjusted by external stimuli; for instance, [[heart rate]] can be altered by pharmaceuticals as well as signals from the [[sympathetic nervous system|sympathetic]] and [[parasympathetic nervous system|parasympathetic]] nerves. The external stimuli do not cause the cell's repetitive firing, but merely alter its timing. In some cases, the regulation of frequency can be more complex, leading to patterns of action potentials, such as [[bursting]].
   −
在感觉神经元中,动作电位来自外部刺激。然而,一些易激活的细胞不需要这样的刺激就可以激活: 它们自发地使轴突突起去极化,并以一个规律的速率激活动作电位,就像一个内部的时钟。这种细胞的电压痕迹称为起搏电位。心脏窦房结的心律调节器细胞就是一个很好的例子le.<ref name="noble_1960" group="lower-alpha" />。虽然这种起搏器电位具有自然节律,但它可以通过外部刺激进行调节; 例如,药物以及交感神经和副交感神经发出的信号可以改变心率。外部刺激不会引起细胞的反复放电,只是改变了它的放电时间。在某些情况下,频率的调节可能更加复杂,导致动作电位的模式,如爆发。
+
在感觉神经元中,动作电位来自外部刺激。然而,一些兴奋型细胞不需要这样的刺激就可以发放动作电位:它们自发地使轴丘去极化,并以一个规律的速率发放动作电位,就像一个内部时钟。这种细胞的电压描记称为起搏电位。心脏窦房结的心律起搏细胞就是一个很好的例子。<ref name="noble_1960" group="lower-alpha" /> 虽然这种起搏器电位具有自然节律,但它可以通过外部刺激进行调节;例如,药物以及交感神经和副交感神经发出的信号可以改变心率。外部刺激不会引起细胞的反复放电,只是改变了它的放电频率。在某些情况下,频率的调节可能更加复杂,导致动作电位的模式,如爆发。
    
==Phases==
 
==Phases==
99

个编辑

导航菜单