在传统因果发现中,Linear Non-Gaussian模型通常是我们期望的模型假设。在这种假设下,我们通常可以实现可识别,有保障的因果发现。我们首先将这种Inductive Bias加在Latent空间 [Yao et al., 2021],假设实际的隐变量与其落后期之间满足线性假设(LNM)。观测到的数据Xt则是隐变量Zt的非线性(但可逆)的映射。另外,只要我们假设因果过程中的噪声(Process Noise)之间互相独立,且满足Genenralized Laplacian分布(一种Non-Gaussian模型假设)。通过理论推导,我们发现只要将这些假设转换为Variational Autoencoder (VAE)的参数化的方式,我们就可以有保证地恢复因果隐变量和它们之间的因果关系。 | 在传统因果发现中,Linear Non-Gaussian模型通常是我们期望的模型假设。在这种假设下,我们通常可以实现可识别,有保障的因果发现。我们首先将这种Inductive Bias加在Latent空间 [Yao et al., 2021],假设实际的隐变量与其落后期之间满足线性假设(LNM)。观测到的数据Xt则是隐变量Zt的非线性(但可逆)的映射。另外,只要我们假设因果过程中的噪声(Process Noise)之间互相独立,且满足Genenralized Laplacian分布(一种Non-Gaussian模型假设)。通过理论推导,我们发现只要将这些假设转换为Variational Autoencoder (VAE)的参数化的方式,我们就可以有保证地恢复因果隐变量和它们之间的因果关系。 |