更改

跳到导航 跳到搜索
添加6字节 、 2022年10月14日 (五) 22:05
第171行: 第171行:     
[[文件:二维伊辛系统在重整化变换后,第一大本征微观态权重(σ1)在临界点处为非平庸不动点,并满足标度关系。.png|缩略图|二维伊辛系统在重整化变换后,第一大本征微观态权重(σ<sub>1</sub>)在临界点处为非平庸不动点,并满足标度关系。]]
 
[[文件:二维伊辛系统在重整化变换后,第一大本征微观态权重(σ1)在临界点处为非平庸不动点,并满足标度关系。.png|缩略图|二维伊辛系统在重整化变换后,第一大本征微观态权重(σ<sub>1</sub>)在临界点处为非平庸不动点,并满足标度关系。]]
结合之前研究所给出<math>σ_1</math>的在临界点处满足的有限尺度标度形式\sigma_1\left(t, h ; \frac{L}{\tilde{a}}\right)=V^{-\bar{\beta}} F_1\left(t V^{\frac{1}{\bar{v}}}, h V^{\frac{1}{\bar{v}_h}}\right)</math></math> <ref>{{cite journal |last1=Hu|first1=Gaoke|last2=Teng|first2=Liu|last3=Maoxin|first3=Liu|last4=Wei|first4=Chen|last5=Xiaosong|first5=Chen|title=Condensation of eigen microstate in statistical ensemble and phase transition|journal=Science China Physics, Mechanics & Astronomy|date=25 April 2019|volume=62|issue=2019|doi=10.1007/s11433-018-9353-x}}</ref>,我们可以获得系统本征值在重整化群变换后的关系为:
+
结合之前研究所给出<math>σ_1</math>的在临界点处满足的有限尺度标度形式<math>\sigma_1\left(t, h ; \frac{L}{\tilde{a}}\right)=V^{-\bar{\beta}} F_1\left(t V^{\frac{1}{\bar{v}}}, h V^{\frac{1}{\bar{v}_h}}\right)</math></math> <ref>{{cite journal |last1=Hu|first1=Gaoke|last2=Teng|first2=Liu|last3=Maoxin|first3=Liu|last4=Wei|first4=Chen|last5=Xiaosong|first5=Chen|title=Condensation of eigen microstate in statistical ensemble and phase transition|journal=Science China Physics, Mechanics & Astronomy|date=25 April 2019|volume=62|issue=2019|doi=10.1007/s11433-018-9353-x}}</ref>,我们可以获得系统本征值在重整化群变换后的关系为:
 
<math>\sigma_1^b\left(t, h ; \frac{L}{\tilde{a}}\right)=b^{\frac{\beta}{v}} \sigma_1\left(t, h ; \frac{L}{\tilde{a}}\right)</math>,其中<math>\sigma_1^b</math>为经过尺寸为<math>b \tilde{a}</math>的元胞变换后的本征值,<math>σ_1</math>为原系统的本征值。该关系分别在一维,二维和三维伊辛模型中得到了检验,右图为二维伊辛模型的结果。
 
<math>\sigma_1^b\left(t, h ; \frac{L}{\tilde{a}}\right)=b^{\frac{\beta}{v}} \sigma_1\left(t, h ; \frac{L}{\tilde{a}}\right)</math>,其中<math>\sigma_1^b</math>为经过尺寸为<math>b \tilde{a}</math>的元胞变换后的本征值,<math>σ_1</math>为原系统的本征值。该关系分别在一维,二维和三维伊辛模型中得到了检验,右图为二维伊辛模型的结果。
  
248

个编辑

导航菜单