针对该问题,北京师范大学陈晓松教授与其合作者们提出了一个解决方案<ref name="Chen">{{cite journal |last1=Sun|first1=Yu|last2=Hu|first2=Gaoke|last3= Zhang|first3=Yongwen|last4=Lu|first4=Bo|last5=Lu|first5=Zhenghui|last6=Fan|first6=Jingfang|last7=Li|first7= Xiaoteng|last8=Deng|first8=Qimin|last9=Chen|first9=Xiaosong|title=Eigen microstates and their evolutions in complex systems|journal=Communications in Theoretical Physics|date=6 May 2021|volume=73|issue=6|doi=10.1088/1572-9494/abf127}}</ref><ref name="hu">{{cite journal |last1=Hu|first1=Gaoke|last2=Liu|first2=Teng|last3=Liu|first3=Maoxin|last4=Chen|first4=Wei|last5=Chen|first5=Xiaosong|title=Condensation of eigen microstate in statistical ensemble and phase transition|journal=Science China Physics, Mechanics & Astronomy|date=25 April 2019|volume=62|issue=2019|doi=10.1007/s11433-018-9353-x}}</ref>,即本征微观态方法。他们从吉布斯所提出的统计系综理论出发,基于复杂系统个体的观测或模拟数据,构建复杂系统的微观态和统计系综。以描述系统微观态的高维向量作为列,系统个体的演化序列作为行,来得到归一的统计系综矩阵。他们利用奇异值分解方法,分解统计系综矩阵,很好地研究了复杂系统中本征微观态的凝聚与系统的相变。 | 针对该问题,北京师范大学陈晓松教授与其合作者们提出了一个解决方案<ref name="Chen">{{cite journal |last1=Sun|first1=Yu|last2=Hu|first2=Gaoke|last3= Zhang|first3=Yongwen|last4=Lu|first4=Bo|last5=Lu|first5=Zhenghui|last6=Fan|first6=Jingfang|last7=Li|first7= Xiaoteng|last8=Deng|first8=Qimin|last9=Chen|first9=Xiaosong|title=Eigen microstates and their evolutions in complex systems|journal=Communications in Theoretical Physics|date=6 May 2021|volume=73|issue=6|doi=10.1088/1572-9494/abf127}}</ref><ref name="hu">{{cite journal |last1=Hu|first1=Gaoke|last2=Liu|first2=Teng|last3=Liu|first3=Maoxin|last4=Chen|first4=Wei|last5=Chen|first5=Xiaosong|title=Condensation of eigen microstate in statistical ensemble and phase transition|journal=Science China Physics, Mechanics & Astronomy|date=25 April 2019|volume=62|issue=2019|doi=10.1007/s11433-018-9353-x}}</ref>,即本征微观态方法。他们从吉布斯所提出的统计系综理论出发,基于复杂系统个体的观测或模拟数据,构建复杂系统的微观态和统计系综。以描述系统微观态的高维向量作为列,系统个体的演化序列作为行,来得到归一的统计系综矩阵。他们利用奇异值分解方法,分解统计系综矩阵,很好地研究了复杂系统中本征微观态的凝聚与系统的相变。 |