更改
跳到导航
跳到搜索
←上一编辑
下一编辑→
双曲空间漫游指南
(查看源代码)
2022年12月28日 (三) 10:29的版本
删除6字节
、
2022年12月28日 (三) 10:29
无编辑摘要
第22行:
第22行:
"魔力"圆盘引导我们得到以下发现:
"魔力"圆盘引导我们得到以下发现:
−
'''(1) 指数增长的空间。'''圆盘上的每条鱼都一样大,之所以远离中心的鱼看起来小,并不是鱼真的变小,而是圆盘在此处“膨胀”从而装下了更多的鱼。事实上,圆盘空间是指数级增长的:当半径为<math>r</math>时,圆盘的面积将增长为
+
'''(1) 指数增长的空间。'''圆盘上的每条鱼都一样大,之所以远离中心的鱼看起来小,并不是鱼真的变小,而是圆盘在此处“膨胀”从而装下了更多的鱼。事实上,圆盘空间是指数级增长的:当半径为<math>r</math>时,圆盘的面积将增长为
<math>A \propto e^{r}</math>——圆盘面积=单条鱼的面积×鱼的数量,而鱼的数量在指数增长——我们熟悉的面积公式
−
<math>A \propto e^{r}</math>
+
<math>A \propto e^{r}A=\pi r^{2}</math>不再适用。
−
−
——圆盘面积=单条鱼的面积×鱼的数量,而鱼的数量在指数增长——我们熟悉的面积公式
−
−
<math>A \propto e^{r}A=\pi r^{2}</math>
−
−
不再适用。
如果来到圆盘边缘,每一条鱼会显得无限小,此时圆盘装下了整个宇宙。
如果来到圆盘边缘,每一条鱼会显得无限小,此时圆盘装下了整个宇宙。
Wind
19
个编辑
导航菜单
个人工具
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
集智百科
集智主页
集智斑图
集智学园
最近更改
所有页面
帮助
工具
特殊页面
可打印版本