第108行: |
第108行: |
| 文件:图14 上半平面模型,黑白三角形镶嵌(图片来源于网络).jpg|图14:上半平面模型,黑白三角形镶嵌(图片来源于网络) | | 文件:图14 上半平面模型,黑白三角形镶嵌(图片来源于网络).jpg|图14:上半平面模型,黑白三角形镶嵌(图片来源于网络) |
| </gallery> | | </gallery> |
− | 在半平面模型中,空间的指数增长在下部边界附近更为显著。由于具有共形性,半平面模型上的平动和转动也保持角度不变。<gallery widths="350" heights="400" mode="packed"> | + | 在半平面模型中,空间的指数增长在下部边界附近更为显著。由于具有共形性,半平面模型上的平动和转动也保持角度不变。<gallery widths="350" heights="400"> |
| 文件:图15 半平面模型的平动(上)和转动(下)(图片来源于http---bulatov.org)2.gif|图15 半平面模型的平动(上) | | 文件:图15 半平面模型的平动(上)和转动(下)(图片来源于http---bulatov.org)2.gif|图15 半平面模型的平动(上) |
| 文件:图15 半平面模型的平动(上)和转动(下)(图片来源于http---bulatov.org).gif|图15 半平面模型的转动(下)(图片来源于http://bulatov.org) | | 文件:图15 半平面模型的平动(上)和转动(下)(图片来源于http---bulatov.org).gif|图15 半平面模型的转动(下)(图片来源于http://bulatov.org) |
第117行: |
第117行: |
| | | |
| 例如Bands模型,使用双曲函数将圆盘展开拉伸,变成一条带子。于是埃舍尔的鱼便可以游到带子上了。 | | 例如Bands模型,使用双曲函数将圆盘展开拉伸,变成一条带子。于是埃舍尔的鱼便可以游到带子上了。 |
− | <gallery widths="400" heights="400" mode="packed"> | + | <gallery widths="400" heights="400"> |
| 文件:图17 从圆盘模型变换到Bands模型(图片来源于http---bulatov.org).gif|图17 从圆盘模型变换到Bands模型(图片来源于http://bulatov.org) | | 文件:图17 从圆盘模型变换到Bands模型(图片来源于http---bulatov.org).gif|图17 从圆盘模型变换到Bands模型(图片来源于http://bulatov.org) |
| 文件:图18 圆极限Ⅲ的Bands模型版本(图片来源于网络).jpeg|图18 圆极限Ⅲ的Bands模型版本(图片来源于网络) | | 文件:图18 圆极限Ⅲ的Bands模型版本(图片来源于网络).jpeg|图18 圆极限Ⅲ的Bands模型版本(图片来源于网络) |
第166行: |
第166行: |
| 除了距离比较反常之外,双曲面模型其实具有很好的对称性,并且符合我们的物理直觉。例如,双曲面模型与过原点的平面相交即为测地线(最短距离)。 | | 除了距离比较反常之外,双曲面模型其实具有很好的对称性,并且符合我们的物理直觉。例如,双曲面模型与过原点的平面相交即为测地线(最短距离)。 |
| | | |
− | 前面讲了球面可以有很多种投影,又讲了双曲面是闵可夫斯基空间中的球面,那它也可以有很多投影,于是戏法就来了:从顶点向双曲面投影,在水平面上将得到庞加莱圆盘(注意圆盘上的测地线是曲线)。<gallery mode="packed" widths="400" heights="300"> | + | 前面讲了球面可以有很多种投影,又讲了双曲面是闵可夫斯基空间中的球面,那它也可以有很多投影,于是戏法就来了:从顶点向双曲面投影,在水平面上将得到庞加莱圆盘(注意圆盘上的测地线是曲线)。<gallery widths="400" heights="300"> |
| 文件:图26 双曲面与庞加莱圆盘(图片来源于网络)1.png|图26:双曲面与庞加莱圆盘(图片来源于网络) | | 文件:图26 双曲面与庞加莱圆盘(图片来源于网络)1.png|图26:双曲面与庞加莱圆盘(图片来源于网络) |
| 文件:图26 双曲面与庞加莱圆盘(图片来源于网络)2.gif|图26 双曲面与庞加莱圆盘(图片来源于网络) | | 文件:图26 双曲面与庞加莱圆盘(图片来源于网络)2.gif|图26 双曲面与庞加莱圆盘(图片来源于网络) |
第199行: |
第199行: |
| 服用迷幻药物后的体验则更奇特(据可信记录,请勿尝试):观察者首先觉得周围的图景更加清晰(就像图片处理中的锐化效果),然后事物会扭曲好像长出尖角,周围的图案会不断重复形成层级,空间容纳了越来越多的物体,并且有窗口通向接连不断的异度空间.….. | | 服用迷幻药物后的体验则更奇特(据可信记录,请勿尝试):观察者首先觉得周围的图景更加清晰(就像图片处理中的锐化效果),然后事物会扭曲好像长出尖角,周围的图案会不断重复形成层级,空间容纳了越来越多的物体,并且有窗口通向接连不断的异度空间.….. |
| | | |
− | <gallery mode="packed" widths="400" heights="400" style="center"> | + | <gallery mode="packed" widths="400" heights="200" style="center"> |
| 文件:图30 致幻作用下的视觉体验 .png|图30:致幻作用下的视觉体验 | | 文件:图30 致幻作用下的视觉体验 .png|图30:致幻作用下的视觉体验 |
| 文件:图30 致幻作用下的视觉体验2.gif|图30:(图片来源于https://qualiacomputing.com/) | | 文件:图30 致幻作用下的视觉体验2.gif|图30:(图片来源于https://qualiacomputing.com/) |