更改

跳到导航 跳到搜索
删除2,894字节 、 2022年12月28日 (三) 19:40
无编辑摘要
第7行: 第7行:  
[[File:Dasyscolia ciliata.jpg|thumb|upright=1.5|授粉的黄蜂 ''Dasyscolia ciliata'' 在与''Ophrys speculum''花进行拟交配<ref name=Pijl/>|链接=Special:FilePath/Dasyscolia_ciliata.jpg]]
 
[[File:Dasyscolia ciliata.jpg|thumb|upright=1.5|授粉的黄蜂 ''Dasyscolia ciliata'' 在与''Ophrys speculum''花进行拟交配<ref name=Pijl/>|链接=Special:FilePath/Dasyscolia_ciliata.jpg]]
 
{{Evolutionary biology}}
 
{{Evolutionary biology}}
In biology, '''coevolution''' occurs when two or more species reciprocally affect each other's evolution through the process of natural selection. The term sometimes is used for two traits in the same species affecting each other's evolution, as well as gene-culture coevolution.在生物学中,当两个或多个物种通过自然选择过程相互影响彼此各自的演化时,就会发生'''共同演化'''。该词语有时用在同一物种中存在相互影响和演化的两个特征上,例如基因和文化的共同演化。
+
在生物学中,当两个或多个物种通过自然选择过程相互影响彼此各自的演化时,就会发生'''共同演化'''。该词语有时用在同一物种中存在相互影响和演化的两个特征上,例如基因和文化的共同演化。
   −
[[Charles Darwin]] mentioned evolutionary interactions between [[flowering plant]]s and [[insect]]s in ''[[On the Origin of Species]]'' (1859). Although he did not use the word coevolution, he suggested how plants and insects could evolve through reciprocal evolutionary changes. Naturalists in the late 1800s studied other examples of how interactions among species could result in reciprocal evolutionary change. Beginning in the 1940s, plant pathologists developed breeding programs that were examples of human-induced coevolution. Development of new crop plant varieties that were resistant to some diseases favored rapid evolution in pathogen populations to overcome those plant defenses. That, in turn, required the development of yet new resistant crop plant varieties, producing an ongoing cycle of reciprocal evolution in crop plants and diseases that continues to this day.
+
1859年,[[Charles Darwin|查尔斯·达尔文]]在他的著作''[[On the Origin of Species|物种起源]]''中提到了[[flowering plant|被子植物]]和[[insect|昆虫]]昆虫之间的进化互动。尽管他没有使用共同进化这个词,但他提出了植物和昆虫是如何通过相互进化的改变而演化的。19世纪晚期的博物学家研究了物种间的交互如何导致彼此演变的其他例子。从20世纪40年代开始的由植物病理学家开发的育种程序就是人类诱导共同进化的例子。培育能够抵抗某些疾病作物的新品种有利于病原体种群的快速进化以克服作物的这些抵御。这反过来又需要开发新的抗性作物品种,这样就造成了在作物和疾病之间的一个持续共同演化的循环;如此的循环一直持续到了今天。
   −
1859年,查尔斯·达尔文在他的著作''物种起源''中提到了被子植物和昆虫之间的进化互动。尽管他没有使用共同进化这个词,但他提出了植物和昆虫是如何通过相互进化的改变而演化的。19世纪晚期的博物学家研究了物种间的交互如何导致彼此演变的其他例子。从20世纪40年代开始的由植物病理学家开发的育种程序就是人类诱导共同进化的例子。培育能够抵抗某些疾病作物的新品种有利于病原体种群的快速进化以克服作物的这些抵御。这反过来又需要开发新的抗性作物品种,这样就造成了在作物和疾病之间的一个持续共同演化的循环;如此的循环一直持续到了今天。
+
共同演化作为自然界研究的一个主要课题,在20世纪60年代中期之后迅速扩大,丹尼尔·H·詹森(Daniel H. Janzen)展示了金合欢和蚂蚁之间的共同演化(见下文),[[Paul R. Ehrlich|保罗·R·埃利希]](Paul R. Ehrlich)和[[Peter H. Raven|彼得·H·雷文]](Peter H. Raven)提出[[Escape and radiate coevolution|植物和蝴蝶之间的共同演化]]可能促进了两个群体的物种多样化。如今共同进化的理论基础已经颇为成熟(例如共同进化的地理镶嵌理论),而且向我们表明了共同演化在推动主要的进化转变中扮演着重要的角色,例如有性生殖的演化或者倍性的变化。<ref name="Thompson, John N">{{Cite book|title=Relentless evolution|last=Thompson, John N.|isbn=978-0-226-01861-4|location=Chicago|oclc=808684836|date = 2013-04-15}}</ref><ref name="itct">{{cite book|last=Nuismer|first=Scott|date=2017|title=Introduction to Coevolutionary Theory|url=https://www.macmillanlearning.com/Catalog/product/introductiontocoevolutionarytheory-firstedition-nuismer/valueoptions|location=New York|publisher=W.F. Freeman|page=395|isbn=978-1-319-10619-5|access-date=2019-05-02|archive-url=https://web.archive.org/web/20190502204606/https://www.macmillanlearning.com/Catalog/product/introductiontocoevolutionarytheory-firstedition-nuismer/valueoptions|archive-date=2019-05-02|url-status=dead}}</ref>最近,共同进化也被证实可以影响生态群落的结构和功能以及共生群体的演化,例如植物和它们的传粉者,以及传染病的动态过程。<ref name="itct" /><ref>{{Cite journal|last1=Guimarães|first1=Paulo R.|last2=Pires|first2=Mathias M.|last3=Jordano|first3=Pedro|last4=Bascompte|first4=Jordi|last5=Thompson|first5=John N.|date=October 2017|title=Indirect effects drive coevolution in mutualistic networks|journal=Nature|language=en|volume=550|issue=7677|pages=511–514|doi=10.1038/nature24273|pmid=29045396|issn=1476-4687|bibcode=2017Natur.550..511G|s2cid=205261069}}</ref>
   −
Coevolution as a major topic for study in nature expanded rapidly after the middle 1960s, when Daniel H. Janzen showed coevolution between acacias and ants (see below) and [[Paul R. Ehrlich]] and [[Peter H. Raven]] suggested how [[Escape and radiate coevolution|coevolution between plants and butterflies]] may have contributed to the diversification of species in both groups. The theoretical underpinnings of coevolution are now well-developed (e.g., the geographic mosaic theory of coevolution), and demonstrate that coevolution can play an important role in driving major evolutionary transitions such as the evolution of sexual reproduction or shifts in ploidy. More recently, it has also been demonstrated that coevolution can influence the structure and function of ecological communities, the evolution of groups of mutualists such as plants and their pollinators, and the dynamics of infectious disease.
+
共同演化关系中的每一方都会向对方施加[[evolutionary pressure|选择压]],从而影响彼此的演化。共同演化包括各种形式的[[mutualism (biology)|互利共生]]、[[host–parasite coevolution|宿主-寄生]]、物种间的[[predation|捕食-被捕食]]关系以及[[intraspecific competition|物种内部]]或[[interspecific competition|物种间]]的竞争。在许多情况下,选择压驱动了相关物种之间[[evolutionary arms race|进化的较量]]。在特定两个物种之间中,'''两两'''和'''单独'''的共同演化的存在并不是唯一的可能;在'''多物种共同演化''',有时被称为'''泛协同(集团性)'''或'''散协同演化'''中,几个到多个物种可能进化出同一个特征或同一组特征,这些特征与另一个物种的一系列特征相互作用,就像被子植物与[[bee|蜜蜂]]、[[fly|苍蝇]][[beetle|甲虫]][[pollinator|传粉]]昆虫之间发生的情况那样。关于物种群之间共同进化的机制,有一套具体的假说。<ref name="Thompson, John N. 2005">{{Cite book|title=The geographic mosaic of coevolution|last=Thompson, John N.|date=2005|publisher=University of Chicago Press|isbn=978-0-226-11869-7|location=Chicago|oclc=646854337}}</ref>
   −
共同演化作为自然界研究的一个主要课题,在20世纪60年代中期之后迅速扩大,丹尼尔·H·詹森(Daniel H. Janzen)展示了金合欢和蚂蚁之间的共同演化(见下文),保罗·R·埃利希(Paul R. Ehrlich)和彼得·H·雷文(Peter H. Raven)提出植物和蝴蝶之间的共同演化可能促进了两个群体的物种多样化。如今共同进化的理论基础已经颇为成熟(例如共同进化的地理镶嵌理论),而且向我们表明了共同演化在推动主要的进化转变中扮演着重要的角色,例如有性生殖的演化或者倍性的变化。<ref name="Thompson, John N">{{Cite book|title=Relentless evolution|last=Thompson, John N.|isbn=978-0-226-01861-4|location=Chicago|oclc=808684836|date = 2013-04-15}}</ref><ref name="itct">{{cite book|last=Nuismer|first=Scott|date=2017|title=Introduction to Coevolutionary Theory|url=https://www.macmillanlearning.com/Catalog/product/introductiontocoevolutionarytheory-firstedition-nuismer/valueoptions|location=New York|publisher=W.F. Freeman|page=395|isbn=978-1-319-10619-5|access-date=2019-05-02|archive-url=https://web.archive.org/web/20190502204606/https://www.macmillanlearning.com/Catalog/product/introductiontocoevolutionarytheory-firstedition-nuismer/valueoptions|archive-date=2019-05-02|url-status=dead}}</ref>最近,共同进化也被证实可以影响生态群落的结构和功能以及共生群体的演化,例如植物和它们的传粉者,以及传染病的动态过程。<ref name="itct" /><ref>{{Cite journal|last1=Guimarães|first1=Paulo R.|last2=Pires|first2=Mathias M.|last3=Jordano|first3=Pedro|last4=Bascompte|first4=Jordi|last5=Thompson|first5=John N.|date=October 2017|title=Indirect effects drive coevolution in mutualistic networks|journal=Nature|language=en|volume=550|issue=7677|pages=511–514|doi=10.1038/nature24273|pmid=29045396|issn=1476-4687|bibcode=2017Natur.550..511G|s2cid=205261069}}</ref>
+
共同进化最初是一个生物学概念,但研究人员已将其应用于[[computer science|计算机科学]][[sociology|社会学]]和[[astronomy|天文学]]等领域。
 
  −
Each party in a coevolutionary relationship exerts [[evolutionary pressure|selective pressures]] on the other, thereby affecting each other's evolution. Coevolution includes many forms of [[mutualism (biology)|mutualism]], [[host–parasite coevolution|host-parasite]], and [[predation|predator-prey]] relationships between species, as well as [[intraspecific competition|competition within]] or [[interspecific competition|between species]]. In many cases, the selective pressures drive an [[evolutionary arms race]] between the species involved. '''Pairwise''' or '''specific coevolution''', between exactly two species, is not the only possibility; in '''multi-species coevolution''', which is sometimes called '''guild''' or '''diffuse coevolution''', several to many species may evolve a trait or a group of traits in reciprocity with a set of traits in another species, as has happened between the flowering plants and [[pollinator|pollinating]] insects such as [[bee]]s, [[fly|flies]], and [[beetle]]s. There are a suite of specific hypotheses on the mechanisms by which groups of species coevolve with each other.
  −
 
  −
共同演化关系中的每一方都会向对方施加选择压,从而影响彼此的演化。共同演化包括各种形式的互利共生、宿主-寄生、物种间的捕食-被捕食关系以及物种内部或物种间的竞争。在许多情况下,选择压驱动了相关物种之间进化的较量。在特定两个物种之间中,'''两两''''''单独'''的共同演化的存在并不是唯一的可能;在'''多物种共同演化''',有时被称为散协同演化中,几个到多个物种可能进化出同一个特征或同一组特征,这些特征与另一个物种的一系列特征相互作用,就像被子植物与蜜蜂、苍蝇和甲虫等传粉昆虫之间发生的情况那样。关于物种群之间共同进化的机制,有一套具体的假说。<ref name="Thompson, John N. 2005">{{Cite book|title=The geographic mosaic of coevolution|last=Thompson, John N.|date=2005|publisher=University of Chicago Press|isbn=978-0-226-11869-7|location=Chicago|oclc=646854337}}</ref>
  −
 
  −
Coevolution is primarily a biological concept, but researchers have applied it by analogy to fields such as [[computer science]], [[sociology]], and [[astronomy]].
  −
 
  −
共同进化最初是一个生物学概念,但研究人员已将其应用于计算机科学、社会学和天文学等领域。
      
==互惠关系==
 
==互惠关系==
68

个编辑

导航菜单