更改

跳到导航 跳到搜索
添加782字节 、 2023年1月2日 (一) 22:14
无编辑摘要
第85行: 第85行:  
{{Main|Predation}}
 
{{Main|Predation}}
   −
[[wikipedia:Predator|捕食者]]和猎物互动并共同演化:捕食者去更有效地捕捉猎物,猎物去逃离追捕;两者的共同演化相互施加这一[[wikipedia:Selective_pressure|选择压]];这往往导致猎物和捕食者之间的[[wikipedia:Evolutionary_arms_race|进化军备竞赛]],并导致[[wikipedia:Anti-predator_adaptation|反捕食者适应]]。
+
[[wikipedia:Predator|捕食者]]和猎物互动并共同演化:捕食者去更有效地捕捉猎物,猎物去逃离追捕;两者的共同演化相互施加这一[[wikipedia:Selective_pressure|选择压]];这往往导致猎物和捕食者之间的[[wikipedia:Evolutionary_arms_race|进化军备竞赛]],并导致[[wikipedia:Anti-predator_adaptation|反捕食者适应]]。<ref>"[https://necsi.edu/predator-prey-relationships Predator-Prey Relationships]". New England Complex Systems Institute. Retrieved 17 January 2017.</ref>
    
这同样适用于[[wikipedia:Herbivore|草食动物]]、植食动物,以及它们吃的植物;1964年,[[wikipedia:Paul_R._Ehrlich|保罗·R·欧里希]]和[[wikipedia:Peter_H._Raven|彼得·R·瑞文]]提出了[[wikipedia:Escape_and_radiate_coevolution|逃逸和辐射的共同演化]]理论来描述植物和蝴蝶的进化多样性;<ref>{{cite journal |last1=Ehrlich |first1=Paul R. |author1-link=Paul R. Ehrlich |last2=Raven |first2=Peter H. |author2-link= Peter H. Raven |year=1964 |title=Butterflies and Plants: A Study in Coevolution |journal=Evolution |volume=18 |issue=4 |pages=586–608 |doi=10.2307/2406212 |jstor=2406212}}</ref>在[[wikipedia:Rocky_Mountains|落基山脉]],[[wikipedia:Red_squirrel|红松鼠]]和[[wikipedia:Crossbill|斑鸠]](食种子的鸟)争夺[[wikipedia:Lodgepole_pine|海滩松]]的种子;松鼠通过啃咬松果鳞片来获取松子,而斑鸠则通过它们不寻常的交叉下颚来获取松子;在有松鼠的地方,海滩松的球果更重、种子更少、鳞片更薄,这使得松鼠更加难以获取种子;相反,如果有斑鸠而没有松鼠,球果的结构会较轻,但有较厚的鳞片,从而就导致交喙更难获取种子;海滩上的锥形细胞与这两种食草动物进行着一场进化中的军备竞赛,在接下来的两个段落中也是这样。<ref name="Berkeley">{{cite web |title=Coevolution |url=https://evolution.berkeley.edu/evolibrary/article/evo_33 |publisher=University of California Berkeley |access-date=17 January 2017}} and the two following pages of the web article.</ref>
 
这同样适用于[[wikipedia:Herbivore|草食动物]]、植食动物,以及它们吃的植物;1964年,[[wikipedia:Paul_R._Ehrlich|保罗·R·欧里希]]和[[wikipedia:Peter_H._Raven|彼得·R·瑞文]]提出了[[wikipedia:Escape_and_radiate_coevolution|逃逸和辐射的共同演化]]理论来描述植物和蝴蝶的进化多样性;<ref>{{cite journal |last1=Ehrlich |first1=Paul R. |author1-link=Paul R. Ehrlich |last2=Raven |first2=Peter H. |author2-link= Peter H. Raven |year=1964 |title=Butterflies and Plants: A Study in Coevolution |journal=Evolution |volume=18 |issue=4 |pages=586–608 |doi=10.2307/2406212 |jstor=2406212}}</ref>在[[wikipedia:Rocky_Mountains|落基山脉]],[[wikipedia:Red_squirrel|红松鼠]]和[[wikipedia:Crossbill|斑鸠]](食种子的鸟)争夺[[wikipedia:Lodgepole_pine|海滩松]]的种子;松鼠通过啃咬松果鳞片来获取松子,而斑鸠则通过它们不寻常的交叉下颚来获取松子;在有松鼠的地方,海滩松的球果更重、种子更少、鳞片更薄,这使得松鼠更加难以获取种子;相反,如果有斑鸠而没有松鼠,球果的结构会较轻,但有较厚的鳞片,从而就导致交喙更难获取种子;海滩上的锥形细胞与这两种食草动物进行着一场进化中的军备竞赛,在接下来的两个段落中也是这样。<ref name="Berkeley">{{cite web |title=Coevolution |url=https://evolution.berkeley.edu/evolibrary/article/evo_33 |publisher=University of California Berkeley |access-date=17 January 2017}} and the two following pages of the web article.</ref>
第96行: 第96行:  
无论是具有如[[wikipedia:Intraspecific_competition|性对抗]]<ref>{{cite journal |doi=10.1098/rstb.2005.1785 |title=Sexual conflict over mating and fertilization: An overview |year=2006 |last1=Parker |first1=G. A. |journal=Philosophical Transactions of the Royal Society B: Biological Sciences |volume=361 |issue=1466 |pages=235–59 |pmid=16612884 |pmc=1569603}}</ref>和[[wikipedia:Sexual selection|性选择]]<ref name="UCL">{{cite web|title=Biol 2007 - Coevolution|url=https://www.ucl.ac.uk/~ucbhdjm/courses/b242/Coevol/Coevol.html|publisher=[[University College, London]]|access-date=19 January 2017}}</ref>等特征的[[wikipedia:Intraspecific_competition|种内竞争]],还是具有如食肉动物之间的[[wikipedia:Interspecific_competition|种间竞争]],都可能推动共同演化。<ref>{{cite journal |last1=Connell |first1=Joseph H. |s2cid=5576868 |title=Diversity and the Coevolution of Competitors, or the Ghost of Competition Past |journal=Oikos |date=October 1980 |volume=35 |issue=2 |pages=131–138 |doi=10.2307/3544421 |jstor=3544421}}</ref>  
 
无论是具有如[[wikipedia:Intraspecific_competition|性对抗]]<ref>{{cite journal |doi=10.1098/rstb.2005.1785 |title=Sexual conflict over mating and fertilization: An overview |year=2006 |last1=Parker |first1=G. A. |journal=Philosophical Transactions of the Royal Society B: Biological Sciences |volume=361 |issue=1466 |pages=235–59 |pmid=16612884 |pmc=1569603}}</ref>和[[wikipedia:Sexual selection|性选择]]<ref name="UCL">{{cite web|title=Biol 2007 - Coevolution|url=https://www.ucl.ac.uk/~ucbhdjm/courses/b242/Coevol/Coevol.html|publisher=[[University College, London]]|access-date=19 January 2017}}</ref>等特征的[[wikipedia:Intraspecific_competition|种内竞争]],还是具有如食肉动物之间的[[wikipedia:Interspecific_competition|种间竞争]],都可能推动共同演化。<ref>{{cite journal |last1=Connell |first1=Joseph H. |s2cid=5576868 |title=Diversity and the Coevolution of Competitors, or the Ghost of Competition Past |journal=Oikos |date=October 1980 |volume=35 |issue=2 |pages=131–138 |doi=10.2307/3544421 |jstor=3544421}}</ref>  
   −
种内竞争会导致[[wikipedia:Sexual_antagonistic_coevolution|性对抗的共同演化]],这是一种类似于[[wikipedia:Evolutionary_arms_race|军备竞赛]]的进化关系;在这种关系中,两性的进化适应性被抵消以获得最大的繁殖成效;例如,一些[[wikipedia:Insect|昆虫]]使用[[wikipedia:Traumatic_insemination|创伤性的授精过程来繁殖]],这对雌性的健康是不利的;在交配过程中,雄性试图通过尽可能多地为雌性授精来最大化自身交配的适配性,但雌性[[wikipedia:Abdomen|腹部]]的被刺穿次数越多,她生存的可能就越小,从而降低了她的适配性。<ref name="Juenger" />   
+
种内竞争会导致[[wikipedia:Sexual_antagonistic_coevolution|性对抗的共同演化]],这是一种类似于[[wikipedia:Evolutionary_arms_race|军备竞赛]]的进化关系;在这种关系中,两性的进化适应性被抵消以获得最大的繁殖成效;例如,一些[[wikipedia:Insect|昆虫]]使用[[wikipedia:Traumatic_insemination|创伤性的授精过程来繁殖]],这对雌性的健康是不利的;在交配过程中,雄性试图通过尽可能多地为雌性授精来最大化自身交配的适配性,但雌性[[wikipedia:Abdomen|腹部]]的被刺穿次数越多,她生存的可能就越小,从而降低了她的适配性。<ref>Siva-Jothy, M. T.; Stutt, A. D. (2003). "[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1691276 A matter of taste: Direct detection of female mating status in the bedbug]". ''Proceedings of the Royal Society B: Biological Sciences''. '''270''' (1515): 649–652. [[wikipedia:Doi_(identifier)|doi]]:[https://doi.org/10.1098%2Frspb.2002.2260 10.1098/rspb.2002.2260]. [[wikipedia:PMC_(identifier)|PMC]] [https://doi.org/10.1098%2Frspb.2002.2260 1691276]. [[wikipedia:PMID_(identifier)|PMID]] [https://pubmed.ncbi.nlm.nih.gov/12769466 12769466].</ref>   
    
== 多物种 ==
 
== 多物种 ==
 
[[文件:Amegilla cingulata on long tube of Acanthus ilicifolius flower.jpg|链接=link=Special:FilePath/Amegilla_cingulata_on_long_tube_of_Acanthus_ilicifolius_flower.jpg|替代=|缩略图|189x189像素|长舌蜜蜂和长筒花朵成对或成组(集团)的“广泛”共同演化。<ref name=Juenger/>]]
 
[[文件:Amegilla cingulata on long tube of Acanthus ilicifolius flower.jpg|链接=link=Special:FilePath/Amegilla_cingulata_on_long_tube_of_Acanthus_ilicifolius_flower.jpg|替代=|缩略图|189x189像素|长舌蜜蜂和长筒花朵成对或成组(集团)的“广泛”共同演化。<ref name=Juenger/>]]
到目前为止,所列出的共同演化类型均是被描述为两两而作用的(也称为特定的共同演化)——其中一个物种的特征直接响应第二个物种特征而演化;反之亦然。然而现实当中所遇到的共同演化并非总是如此。另一种演化模式出现在相互演化之处,然而是在一组物种而不是两个物种之间;这被称作为泛协同性(集团性)的或散漫的共同演化。例如,几种[[wikipedia:Flowering_plant|被子植物]]例如在长管的末端提供[[wikipedia:Nectar|花蜜]]的特征可以与一种或几种传粉昆虫例如长喙的特征共同演化;更一般地说,被子植物是由来自不同科的昆虫授粉的,包括[[wikipedia:Bee|蜜蜂]]、[[wikipedia:Fly|苍蝇]]和[[wikipedia:Beetle|甲虫]],所有这些昆虫形成了一个广泛的[[wikipedia:Pollinator|授粉者]]的[[wikipedia:Guild_(ecology)|协同系统]],它们对花朵产生的花蜜或花粉作出反应。<ref name="Juenger">Juenger, Thomas, and [[Joy Bergelson]]. "Pairwise versus diffuse natural selection and the multiple herbivores of scarlet gilia, Ipomopsis aggregata." Evolution (1998): 1583–1592.</ref><ref>{{cite book |author1=Gullan, P. J. |author2=Cranston, P. S. |date=2010 |title=The Insects: An Outline of Entomology |url=https://archive.org/details/insectsoutlineen00pjgu |url-access=limited |publisher=Wiley |edition=4th |isbn=978-1-118-84615-5 |pages=[https://archive.org/details/insectsoutlineen00pjgu/page/n315 291]–293}}</ref><ref>{{cite journal |last1=Rader |first1=Romina |last2=Bartomeus |first2=Ignasi |display-authors=etal |title=Non-bee insects are important contributors to global crop pollination |journal=PNAS |date=2016 |volume=113 |issue=1 |doi=10.1073/pnas.1517092112 |pmid=26621730 |pmc=4711867 |pages=146–151 |bibcode=2016PNAS..113..146R|doi-access=free }}</ref>
+
到目前为止,所列出的共同演化类型均是被描述为两两而作用的(也称为特定的共同演化)——其中一个物种的特征直接响应第二个物种特征而演化;反之亦然。然而现实当中所遇到的共同演化并非总是如此。另一种演化模式出现在相互演化之处,然而是在一组物种而不是两个物种之间;这被称作为泛协同性(集团性)的或散漫的共同演化。例如,几种[[wikipedia:Flowering_plant|被子植物]]例如在长管的末端提供[[wikipedia:Nectar|花蜜]]的特征可以与一种或几种传粉昆虫例如长喙的特征共同演化;更一般地说,被子植物是由来自不同科的昆虫授粉的,包括[[wikipedia:Bee|蜜蜂]]、[[wikipedia:Fly|苍蝇]]和[[wikipedia:Beetle|甲虫]],所有这些昆虫形成了一个广泛的[[wikipedia:Pollinator|授粉者]]的[[wikipedia:Guild_(ecology)|协同系统]],它们对花朵产生的花蜜或花粉作出反应。<ref name="Juenger">Siva-Jothy, M. T.; Stutt, A. D. (2003). "A matter of taste: Direct detection of female mating status in the bedbug". ''Proceedings of the Royal Society B: Biological Sciences''. '''270''' (1515): 649–652. doi:10.1098/rspb.2002.2260. PMC 1691276. <nowiki>PMID 12769466</nowiki>.</ref><ref>{{cite book |author1=Gullan, P. J. |author2=Cranston, P. S. |date=2010 |title=The Insects: An Outline of Entomology |url=https://archive.org/details/insectsoutlineen00pjgu |url-access=limited |publisher=Wiley |edition=4th |isbn=978-1-118-84615-5 |pages=[https://archive.org/details/insectsoutlineen00pjgu/page/n315 291]–293}}</ref><ref>{{cite journal |last1=Rader |first1=Romina |last2=Bartomeus |first2=Ignasi |display-authors=etal |title=Non-bee insects are important contributors to global crop pollination |journal=PNAS |date=2016 |volume=113 |issue=1 |doi=10.1073/pnas.1517092112 |pmid=26621730 |pmc=4711867 |pages=146–151 |bibcode=2016PNAS..113..146R|doi-access=free }}</ref>
    
== 地理镶嵌理论 ==
 
== 地理镶嵌理论 ==
68

个编辑

导航菜单