更改

跳到导航 跳到搜索
删除2字节 、 2024年3月5日 (星期二)
第44行: 第44行:  
|}
 
|}
 
{| class="wikitable"
 
{| class="wikitable"
| colspan="1" rowspan="1" |<nowiki>在另外研究一个表皮生长因子受体 (EGFR)在受到外界信号再刺激时的行为的实验中,也同样应用了sloppy的理论,。实验涉及到的参数包括活性 Cool-1、活性 Cdc42 和 Cbl。实验想要判断Cbl与活性 Cool-1、活性 Cdc42 的关系。该系统有两种机制,两种机制之间互相影响。这给实验带来了极大困难。虽然可以给这个系统建立一个与以往实验数据相符的计算模型,但是仍然无法准确预测系统的行为。为了解决这个问题,生物学家应用了成本函数。先是计算了整体偏差$$C(\theta)=\sum_{\alpha=1}^D\sum_{i=1}^ {m_\alpha}\left(\frac{y_\alpha(t_{\alpha i},\theta)-d_{\alpha i}}{\sigma_{\alpha i}}\right)^2$$</nowiki>
+
| colspan="1" rowspan="1" |<nowiki>在另外研究一个表皮生长因子受体 (EGFR)在受到外界信号再刺激时的行为的实验中,也同样应用了sloppy的理论,。实验涉及到的参数包括活性 Cool-1、活性 Cdc42 和 Cbl。实验想要判断Cbl与活性 Cool-1、活性 Cdc42 的关系。该系统有两种机制,两种机制之间互相影响。这给实验带来了极大困难。虽然可以给这个系统建立一个与以往实验数据相符的计算模型,但是仍然无法准确预测系统的行为。为了解决这个问题,生物学家应用了成本函数。先是计算了整体偏差C(\theta)=\sum_{\alpha=1}^D\sum_{i=1}^ {m_\alpha}\left(\frac{y_\alpha(t_{\alpha i},\theta)-d_{\alpha i}}{\sigma_{\alpha i}}\right)^2$$</nowiki>
    
其中$$D$$是要测量的参数个数,而$$m_\alpha$$是每个参数的取样点
 
其中$$D$$是要测量的参数个数,而$$m_\alpha$$是每个参数的取样点

导航菜单