更改

跳到导航 跳到搜索
第49行: 第49行:     
==实验分析==
 
==实验分析==
该工作<ref>Klein B, Hoel E. The emergence of informative higher scales in complex networks[J]. Complexity, 2020, 20201-12.</ref>在随机(ER)、偏好依赖(PA)等人工网络,以及 4 类真实网络中做了试验。 对于ER网络,有效信息的大小只依赖连接概率 <math>p </math>,并且随着网络规模的增大会收敛到<math>-log_2p </math>。在某点之后,随机网络结构不会随着其规模的增加而包含更多的信息,这个相变点近似在网络的平均度 <math><k> </math>=<math>log_2N </math> 的位置。随着ER网络连接概率的增大,巨连通集团相变点位置对应出现,如图a所示。对于PA 网络:<math>\alpha<1.0 </math>时,有效信息的大小随着网络规模的增加而增大;<math>\alpha>1.0 </math>时,结论相反; <math>\alpha=1.0 </math>对应的无标度网络则是增长的临界边界,如图b所示。对于真实网络,生物网络因为具有很大的噪声,所以有效信息最低,通过有效的粗粒化能去除这些噪声。相较于其他类型,因果涌现最显著;技术类型网络是更稀疏、非退化的网络,因此,平均效率更高,节点关系更加具体,所有有效信息也最多,如图c所示。此外,还利用贪婪算法构建了宏观尺度的网络,对于大规模网络其效率很低。Griebenow 等<ref>Griebenow R, Klein B, Hoel E. Finding the right scale of a network: efficient identification of causal emergence through spectral clustering[J]. arXiv preprint arXiv:190807565, 2019.</ref>提出了一种基于谱聚类的方法识别偏好依附网络中的因果涌现。相较于贪婪算法以及梯度下降算法,谱聚类算法的计算时间最少,同时找到宏观网络的因果涌现也更加显著。
+
该工作<ref>Klein B, Hoel E. The emergence of informative higher scales in complex networks[J]. Complexity, 2020, 20201-12.</ref>在随机(ER)、偏好依赖(PA)等人工网络,以及 4 类真实网络中做了试验。 对于ER网络,有效信息的大小只依赖连接概率 <math>p </math>,并且随着网络规模的增大会收敛到<math>-log_2p </math>。在某点之后,随机网络结构不会随着其规模的增加而包含更多的信息,这个相变点近似在网络的平均度 <math><k> </math>=<math>log_2N </math> 的位置。随着ER网络连接概率的增大,巨连通集团相变点位置对应出现,如图a所示。对于PA 网络:<math>\alpha<1.0 </math>时,有效信息的大小随着网络规模的增加而增大;<math>\alpha>1.0 </math>时,结论相反; <math>\alpha=1.0 </math>对应的无标度网络则是增长的临界边界,如图b所示。对于真实网络,生物网络因为具有很大的噪声,所以有效信息最低,通过有效的粗粒化能去除这些噪声。相较于其他类型,因果涌现最显著;技术类型网络是更稀疏、非退化的网络,因此,平均效率更高,节点关系更加具体,所有有效信息也最多,如图c所示。此外,还利用贪婪算法构建了宏观尺度的网络,对于大规模网络其效率很低。Griebenow 等<ref>Griebenow R, Klein B, Hoel E. Finding the right scale of a network: efficient identification of causal emergence through spectral clustering[J]. arXiv preprint arXiv:190807565, 2019.</ref>提出了一种基于谱聚类的方法识别偏好依附网络中的因果涌现。相较于贪婪算法以及梯度下降算法,谱聚类算法的计算时间最少,同时找到宏观网络的因果涌现也更加显著。
 
[[文件:实验结果.png|居中|500x600像素|实验结果|缩略图]]
 
[[文件:实验结果.png|居中|500x600像素|实验结果|缩略图]]
  
212

个编辑

导航菜单