更改

跳到导航 跳到搜索
删除121字节 、 2024年6月7日 (星期五)
第391行: 第391行:  
===一阶导数及极值点===
 
===一阶导数及极值点===
   −
不失一般性,我们不妨假设对于选定的[math]i,j\in[1,N][/math],[math]p_{ij},p_{iN},\bar{p}_{\cdot j}\equiv \frac{\sum_{k=1}^Np_{kj}}{N},\bar{p}_{\cdot N}\equiv \frac{\sum_{k=1}^Np_{kN}}{N}[/math]都是大于0的,则EI在[math]p_{ij}[/math]附近是可导的,对公式{{EquationNote|2}}求[math]p_{ij}[/math]的一阶导数,并注意到归一化条件[math]\sum_{j=1}^Np_{ij}=1[/math],则就可以得到:
+
对公式{{EquationNote|2}}求[math]p_{ij}[/math]的一阶导数,并注意到归一化条件[math]\sum_{j=1}^Np_{ij}=1[/math],则就可以得到:
    +
{{NumBlk|:|
 
<math>
 
<math>
\begin{equation}
+
\frac{\partial EI}{\partial p_{ij}}=\log\left(\frac{p_{ij}}{p_{iN}}\right)-\log\left(\frac{\bar{p}_{\cdot j}}{\bar{p}_{\cdot N}}\right),
        \frac{\partial EI}{\partial p_{ij}}=\log\left(\frac{p_{ij}}{p_{iN}}\right)-\log\left(\frac{\bar{p}_{\cdot j}}{\bar{p}_{\cdot N}}\right),
  −
\end{equation}
   
</math>
 
</math>
 +
|{{EquationRef|3}}}}
   −
其中,<math>p_{ij}</math>表示P中第i行第j列的条件概率,因为P每一行有归一化约束条件,所以EI函数本身有<math>N(N-1)</math>个自由变元,我们可以取<math>1\leq i\leq N, 1\leq j\leq N-1</math>。<math>p_{iN}</math>表示第i行第N列的条件概率,<math>\bar{p}_{\cdot j}, \bar{p}_{\cdot N}</math>则分别表示第j列和第N列条件概率的均值。令该式等于0,可以求得极值点:即对于任意的<math>1\leq i\leq N, 1\leq j\leq N-1</math>,都有下式的成立,
+
其中,<math>p_{ij}</math>表示P中第i行第j列的条件概率,因为P每一行有归一化约束条件{{EquationNote|2}},所以EI函数本身有<math>N(N-1)</math>个自由变元,我们可以取<math>1\leq i\leq N, 1\leq j\leq N-1</math>。<math>p_{iN}</math>表示第i行第N列的条件概率,<math>\bar{p}_{\cdot j}, \bar{p}_{\cdot N}</math>则分别表示第j列和第N列条件概率的均值。不难看出,该导数有定义的前提是对于选定的[math]i,j\in[1,N][/math],[math]p_{ij},p_{iN},\bar{p}_{\cdot j}\equiv \frac{\sum_{k=1}^Np_{kj}}{N},\bar{p}_{\cdot N}\equiv \frac{\sum_{k=1}^Np_{kN}}{N}[/math]都大于0,只有满足这个条件,则EI在[math]p_{ij}[/math]附近是可导的。否则,如果有一项为0,则导数不存在。
 +
 
 +
令式{{EquationNote|3}}等于0,可以求得极值点:即对于任意的<math>1\leq i\leq N, 1\leq j\leq N-1</math>,都有下式的成立,
    
<math>
 
<math>
 
+
p_{ij}=\bar{p}_{\cdot j}=\frac{1}{N}\sum_{k=1}^Np_{kj}
\begin{equation}
  −
        p_{ij}=\bar{p}_{\cdot j}=\frac{1}{N}\sum_{k=1}^Np_{kj}
  −
\end{equation}
  −
   
   
</math>
 
</math>
   −
不难计算出,此时<math>EI=0</math>,即EI达到了极值点。根据EI的二阶导数不难判断出,这是极小值点。换个角度来看这个公式,这意味着EI的极小值点有很多个,只要转移概率矩阵所有行向量完全一致,无论该行向量本身是怎样的分布,EI都会等于0。如果[math]p_{ij},p_{iN},\bar{p}_{\cdot j}\equiv \frac{\sum_{k=1}^Np_{kj}}{N},\bar{p}_{\cdot N}\equiv \frac{\sum_{k=1}^Np_{kN}}{N}[/math]中存在着0,那么EI在此处不可导。
+
不难计算出,此时<math>EI=0</math>,即EI达到了极值点。根据EI的二阶导数不难判断出,这是极小值点。换个角度来看这个公式,这意味着EI的极小值点有很多个,只要转移概率矩阵所有行向量完全一致,无论该行向量本身是怎样的分布,EI都会等于0。
    
===二阶导数与凸性===
 
===二阶导数与凸性===
786

个编辑

导航菜单