第391行: |
第391行: |
| ===一阶导数及极值点=== | | ===一阶导数及极值点=== |
| | | |
− | 不失一般性,我们不妨假设对于选定的[math]i,j\in[1,N][/math],[math]p_{ij},p_{iN},\bar{p}_{\cdot j}\equiv \frac{\sum_{k=1}^Np_{kj}}{N},\bar{p}_{\cdot N}\equiv \frac{\sum_{k=1}^Np_{kN}}{N}[/math]都是大于0的,则EI在[math]p_{ij}[/math]附近是可导的,对公式{{EquationNote|2}}求[math]p_{ij}[/math]的一阶导数,并注意到归一化条件[math]\sum_{j=1}^Np_{ij}=1[/math],则就可以得到:
| + | 对公式{{EquationNote|2}}求[math]p_{ij}[/math]的一阶导数,并注意到归一化条件[math]\sum_{j=1}^Np_{ij}=1[/math],则就可以得到: |
| | | |
| + | {{NumBlk|:| |
| <math> | | <math> |
− | \begin{equation}
| + | \frac{\partial EI}{\partial p_{ij}}=\log\left(\frac{p_{ij}}{p_{iN}}\right)-\log\left(\frac{\bar{p}_{\cdot j}}{\bar{p}_{\cdot N}}\right), |
− | \frac{\partial EI}{\partial p_{ij}}=\log\left(\frac{p_{ij}}{p_{iN}}\right)-\log\left(\frac{\bar{p}_{\cdot j}}{\bar{p}_{\cdot N}}\right),
| |
− | \end{equation}
| |
| </math> | | </math> |
| + | |{{EquationRef|3}}}} |
| | | |
− | 其中,<math>p_{ij}</math>表示P中第i行第j列的条件概率,因为P每一行有归一化约束条件,所以EI函数本身有<math>N(N-1)</math>个自由变元,我们可以取<math>1\leq i\leq N, 1\leq j\leq N-1</math>。<math>p_{iN}</math>表示第i行第N列的条件概率,<math>\bar{p}_{\cdot j}, \bar{p}_{\cdot N}</math>则分别表示第j列和第N列条件概率的均值。令该式等于0,可以求得极值点:即对于任意的<math>1\leq i\leq N, 1\leq j\leq N-1</math>,都有下式的成立, | + | 其中,<math>p_{ij}</math>表示P中第i行第j列的条件概率,因为P每一行有归一化约束条件{{EquationNote|2}},所以EI函数本身有<math>N(N-1)</math>个自由变元,我们可以取<math>1\leq i\leq N, 1\leq j\leq N-1</math>。<math>p_{iN}</math>表示第i行第N列的条件概率,<math>\bar{p}_{\cdot j}, \bar{p}_{\cdot N}</math>则分别表示第j列和第N列条件概率的均值。不难看出,该导数有定义的前提是对于选定的[math]i,j\in[1,N][/math],[math]p_{ij},p_{iN},\bar{p}_{\cdot j}\equiv \frac{\sum_{k=1}^Np_{kj}}{N},\bar{p}_{\cdot N}\equiv \frac{\sum_{k=1}^Np_{kN}}{N}[/math]都大于0,只有满足这个条件,则EI在[math]p_{ij}[/math]附近是可导的。否则,如果有一项为0,则导数不存在。 |
| + | |
| + | 令式{{EquationNote|3}}等于0,可以求得极值点:即对于任意的<math>1\leq i\leq N, 1\leq j\leq N-1</math>,都有下式的成立, |
| | | |
| <math> | | <math> |
− | | + | p_{ij}=\bar{p}_{\cdot j}=\frac{1}{N}\sum_{k=1}^Np_{kj} |
− | \begin{equation}
| |
− | p_{ij}=\bar{p}_{\cdot j}=\frac{1}{N}\sum_{k=1}^Np_{kj}
| |
− | \end{equation}
| |
− |
| |
| </math> | | </math> |
| | | |
− | 不难计算出,此时<math>EI=0</math>,即EI达到了极值点。根据EI的二阶导数不难判断出,这是极小值点。换个角度来看这个公式,这意味着EI的极小值点有很多个,只要转移概率矩阵所有行向量完全一致,无论该行向量本身是怎样的分布,EI都会等于0。如果[math]p_{ij},p_{iN},\bar{p}_{\cdot j}\equiv \frac{\sum_{k=1}^Np_{kj}}{N},\bar{p}_{\cdot N}\equiv \frac{\sum_{k=1}^Np_{kN}}{N}[/math]中存在着0,那么EI在此处不可导。 | + | 不难计算出,此时<math>EI=0</math>,即EI达到了极值点。根据EI的二阶导数不难判断出,这是极小值点。换个角度来看这个公式,这意味着EI的极小值点有很多个,只要转移概率矩阵所有行向量完全一致,无论该行向量本身是怎样的分布,EI都会等于0。 |
| | | |
| ===二阶导数与凸性=== | | ===二阶导数与凸性=== |