更改

跳到导航 跳到搜索
大小无更改 、 2024年6月9日 (星期日)
第829行: 第829行:  
</math>
 
</math>
   −
其中,[math]W[/math]为粗粒化矩阵,它的阶数为n*m,m为宏观状态空间的维度,它的作用是把任意的微观态[math]x_t[/math]映射为宏观态[math]y_t[/math]。[math]W^{\dagger}[/math]为W的伪逆运算。式中第一项是由确定性引发的涌现,简称'''确定性涌现'''(Determinism Emergence),第二项为简并性引发的涌现,简称'''简并性涌现'''。更详细的内容参看[[线性迭代系统的EI]]。
+
其中,[math]W[/math]为粗粒化矩阵,它的阶数为n*m,m为宏观状态空间的维度,它的作用是把任意的微观态[math]x_t[/math]映射为宏观态[math]y_t[/math]。[math]W^{\dagger}[/math]为W的伪逆运算。式中第一项是由确定性引发的涌现,简称'''确定性涌现'''(Determinism Emergence),第二项为简并性引发的涌现,简称'''简并性涌现'''。更详细的内容参看[[随机迭代系统的EI]]。
    
==前馈神经网络==
 
==前馈神经网络==
786

个编辑

导航菜单