− | EI\approx \ln\left(\frac{L^n}{(2\pi e)^{n/2}}\right)+\frac{1}{L^n}\int_{-[\frac{L}{2},\frac{L}{2}]^n}\ln\left|\det\left(\frac{\partial_x f(x)}{\Sigma^{1/2}}\right)\right| dx, | + | EI(f,\Sigma)\approx \ln\left(\frac{L^n}{(2\pi e)^{n/2}}\right)+\frac{1}{L^n}\int_{-[\frac{L}{2},\frac{L}{2}]^n}\ln\left|\det\left(\frac{\partial_x f(x)}{\Sigma^{1/2}}\right)\right| dx, |
− | \mathcal{J}=\frac{EI}{n}\approx \ln\left(\frac{L}{(2\pi e)^{1/2}}\right)+\frac{1}{L^n}\int_{-[\frac{L}{2},\frac{L}{2}]^n}\ln\left|\det\left(\frac{\partial_x f(x)}{\Sigma^{1/2}}\right)\right| dx, | + | \mathcal{J}(f,\Sigma)=\frac{EI(f,\Sigma)}{n}\approx \ln\left(\frac{L}{(2\pi e)^{1/2}}\right)+\frac{1}{L^n}\int_{-[\frac{L}{2},\frac{L}{2}]^n}\ln\left|\det\left(\frac{\partial_x f(x)}{\Sigma^{1/2}}\right)\right|^\frac{1}{n} dx, |