更改

跳到导航 跳到搜索
添加42字节 、 2024年7月25日 (星期四)
第24行: 第24行:     
<math>I(X_1,X_2; Y) = Red(X_1,X_2; Y) + Un(X_1; Y |X_2) + Un(X_2; Y |X_1) + Syn(X_1,X_2; Y) </math>
 
<math>I(X_1,X_2; Y) = Red(X_1,X_2; Y) + Un(X_1; Y |X_2) + Un(X_2; Y |X_1) + Syn(X_1,X_2; Y) </math>
  −
      
不过,PID只适用于单个目标变量的情景,无法有效的应用于跨时间步长的系统。故,Rosas等学者提出了集成信息分解(Integrated Information Decomposition,简称ΦID)。在给定宏观状态<math>V </math>的情况下,如果宏观变量(V<sub>t</sub>)所持有的关于微观变量独特信息大于0,则出现因果涌现。
 
不过,PID只适用于单个目标变量的情景,无法有效的应用于跨时间步长的系统。故,Rosas等学者提出了集成信息分解(Integrated Information Decomposition,简称ΦID)。在给定宏观状态<math>V </math>的情况下,如果宏观变量(V<sub>t</sub>)所持有的关于微观变量独特信息大于0,则出现因果涌现。
  −
      
<math>Syn(X_{t};X_{t+1}) ≥ Un(V_t;X_{t+1}|X_t) > 0 </math>
 
<math>Syn(X_{t};X_{t+1}) ≥ Un(V_t;X_{t+1}|X_t) > 0 </math>
第42行: 第38行:       −
由于<math>Red(V_t, V_{t+1};X_t) </math>为非负数,所以可以提出一个充分非必要条件<math>\Psi_{t, t+1}(V) </math>。当<math>\Psi_{t, t+1}(V) > 0 </math>,宏观状态<math>V </math>发生因果涌现。但当<math>\mathrm{\Psi}<0 </math>,我们不能确定宏观状态<math>V </math>是否发生涌现,此时需要借助进一步的指标。
+
由于<math>Red(V_t, V_{t+1};X_t) </math>为非负数,所以可以提出一个充分非必要条件<math>\Psi_{t, t+1}(V) </math>,用于测量两个时间步宏观变量的互信息减去每个t时刻微观变量和t+1时刻宏观变量的互信息。
 
      +
当<math>\Psi_{t, t+1}(V) > 0 </math>,宏观状态<math>V </math>发生因果涌现。但当<math>\mathrm{\Psi}<0 </math>,我们不能确定宏观状态<math>V </math>是否发生因果涌现。
    
<math>\Psi_{t, t+1}(V):=I\left(V_t ; V_{t+1}\right)-\sum_j I\left(X_t^j ; V_{t+1}\right) </math>
 
<math>\Psi_{t, t+1}(V):=I\left(V_t ; V_{t+1}\right)-\sum_j I\left(X_t^j ; V_{t+1}\right) </math>
    +
该方法避开讨论粗粒化策略,但是也存在很多缺点:1)该方法只是基于互信息计算没有考虑因果,且得到的仅仅是发生因果涌现的充分条件;2)该方法需要预设宏观变量,且对宏观变量的不同选择会对结果造成显著影响;3)当系统具有大量冗余信息或具有许多变量时,该方法的计算复杂度仍然很高。
   −
  −
  −
  −
该方法避开讨论粗粒化策略。但是也存在很多缺点:1)该方法只是基于信息分解计算没有考虑因果,同时该方法得到的仅仅是发生因果涌现的充分条件;2)该方法无法得到显式的宏观动力学以及粗粒化策略,然而这两项对于下游的任务往往十分重要;3)当系统具有大量冗余信息或具有许多变量时,该方法的计算复杂度仍然很高。
       
259

个编辑

导航菜单