第23行: |
第23行: |
| | | |
| 为了简化问题且不失通用性,以有两个输入变量(X<sub>1</sub>、X<sub>2</sub>)和一个输出变量(Y)的系统为例,目标变量和联合源变量的互信息<math>I(X_1,X_2; Y) </math>可以通过部分信息分解(Partial Information Decomposition,简称PID)分解成三种信息,分别是冗余信息(Redundant information,简称Red)、独特信息(Unique information,简称Un)、协同信息(Synergistic information,简称Syn),具体公式如下: | | 为了简化问题且不失通用性,以有两个输入变量(X<sub>1</sub>、X<sub>2</sub>)和一个输出变量(Y)的系统为例,目标变量和联合源变量的互信息<math>I(X_1,X_2; Y) </math>可以通过部分信息分解(Partial Information Decomposition,简称PID)分解成三种信息,分别是冗余信息(Redundant information,简称Red)、独特信息(Unique information,简称Un)、协同信息(Synergistic information,简称Syn),具体公式如下: |
− |
| |
− |
| |
| <math>I(X_1,X_2; Y) = Red(X_1,X_2; Y) + Un(X_1; Y |X_2) + Un(X_2; Y |X_1) + Syn(X_1,X_2; Y) </math> | | <math>I(X_1,X_2; Y) = Red(X_1,X_2; Y) + Un(X_1; Y |X_2) + Un(X_2; Y |X_1) + Syn(X_1,X_2; Y) </math> |
− |
| |
− |
| |
| | | |
| 不过,PID只适用于单个目标变量的情景,无法有效的应用于跨时间步长的系统。故,Rosas等学者提出了整合信息分解(Integrated Information Decomposition,简称ΦID)。当且仅当协同信息大于0的时候,系统有能力发生因果涌现。 | | 不过,PID只适用于单个目标变量的情景,无法有效的应用于跨时间步长的系统。故,Rosas等学者提出了整合信息分解(Integrated Information Decomposition,简称ΦID)。当且仅当协同信息大于0的时候,系统有能力发生因果涌现。 |
− |
| |
− |
| |
| <math>Syn(X_{t};X_{t+1}) > 0 </math> | | <math>Syn(X_{t};X_{t+1}) > 0 </math> |
− |
| |
− |
| |
| | | |
| 在给定宏观状态<math>V </math>的情况下,<math>Syn(X_{t};X_{t+1}) ≥ Un(V_t;X_{t+1}|X_t) </math>。所以,如果宏观变量(V<sub>t</sub>)所持有的关于微观变量独特信息大于0,则出现因果涌现。 | | 在给定宏观状态<math>V </math>的情况下,<math>Syn(X_{t};X_{t+1}) ≥ Un(V_t;X_{t+1}|X_t) </math>。所以,如果宏观变量(V<sub>t</sub>)所持有的关于微观变量独特信息大于0,则出现因果涌现。 |
− |
| |
− |
| |
− |
| |
− |
| |
| <math>Syn(X_{t};X_{t+1}) ≥ Un(V_t;X_{t+1}|X_t) > 0 </math> | | <math>Syn(X_{t};X_{t+1}) ≥ Un(V_t;X_{t+1}|X_t) > 0 </math> |
− |
| |
− |
| |
| | | |
| 通过互信息的相关计算公式,可以得知: | | 通过互信息的相关计算公式,可以得知: |
− |
| |
− |
| |
| | | |
| <math>Un(V_t;X_{t+1}|X_t) ≥ I\left(V_t ; V_{t+1}\right)-\sum_j I\left(X_t^j ; V_{t+1}\right) + Red(V_t, V_{t+1};X_t) </math> | | <math>Un(V_t;X_{t+1}|X_t) ≥ I\left(V_t ; V_{t+1}\right)-\sum_j I\left(X_t^j ; V_{t+1}\right) + Red(V_t, V_{t+1};X_t) </math> |
− |
| |
− |
| |
| 式中,<math>X_t^j </math>表示第 j 维t时刻的微观变量,<math>V_t ; V_{t+1} </math>代表两个连续时间的宏观状态变量。 | | 式中,<math>X_t^j </math>表示第 j 维t时刻的微观变量,<math>V_t ; V_{t+1} </math>代表两个连续时间的宏观状态变量。 |
| | | |
第57行: |
第39行: |
| | | |
| 当<math>\Psi_{t, t+1}(V) > 0 </math>,系统发生因果涌现。但当<math>\mathrm{\Psi}<0 </math>,我们不能确定系统是否发生因果涌现。 | | 当<math>\Psi_{t, t+1}(V) > 0 </math>,系统发生因果涌现。但当<math>\mathrm{\Psi}<0 </math>,我们不能确定系统是否发生因果涌现。 |
− |
| |
− |
| |
− |
| |
− |
| |
| <math>\Psi_{t, t+1}(V):=I\left(V_t ; V_{t+1}\right)-\sum_j I\left(X_t^j ; V_{t+1}\right) </math> | | <math>\Psi_{t, t+1}(V):=I\left(V_t ; V_{t+1}\right)-\sum_j I\left(X_t^j ; V_{t+1}\right) </math> |
− |
| |
− |
| |
| | | |
| 该方法避开讨论粗粒化策略,但是也存在很多缺点: | | 该方法避开讨论粗粒化策略,但是也存在很多缺点: |