− | 正向动力学训练是最小化预测误差<math>\left\|\phi_q^{\dagger}(Y(t+1))-X_{t+1}\right\| </math>,保证动力学预测未来的准确性,但是EI作为一种特殊的互信息,不仅与确定性有关,还与简并性有关,我们需要在提高动力学学习器的确定性的同时,提高它的非简并性。因此,学者在NIS的框架基础之上,加入了反向动力学,用以反向预测,即输入<math>y_{t+1}</math>,通过动力学学习器<math>g</math>之后,得到宏观量的反向预测值<math>\hat{y}_{t}</math>,使<math>y_{t+1}</math>和<math>\hat{y}_{t}</math>之间的误差值最小化。通过训练反向动力学学习器<math>g</math>,我们可以影响编码器,进而影响隐空间中的数据分布,从而使得动力学学习器<math>f</math>可以学到一个简并性低的动力学。 | + | 正向动力学训练是最小化预测误差<math>\left\|\phi_q^{\dagger}(Y(t+1))-X_{t+1}\right\| </math>,保证动力学预测未来的准确性,但是EI作为一种特殊的互信息,不仅与确定性有关,还与简并性有关。我们需要在提高动力学学习器的确定性的同时,提高它的非简并性。因此,学者在NIS的框架基础之上,加入了反向动力学,用以反向预测,即输入<math>y_{t+1}</math>,通过动力学学习器<math>g</math>之后,得到宏观量的反向预测值<math>\hat{y}_{t}</math>,使<math>y_{t+1}</math>和<math>\hat{y}_{t}</math>之间的误差值最小化。通过训练反向动力学学习器<math>g</math>,我们可以影响编码器,进而影响隐空间中的数据分布,从而使得动力学学习器<math>f</math>可以学到一个简并性低的动力学。 |