第3行: |
第3行: |
| </math>,用于量化因果涌现的强度。经过理论推导和数值实验证明,在对因果涌现的判断和量化上,该理论与Eric Hoel等人提出的基于[[有效信息]](EI)的因果涌现理论具有相同的效果,且<math> | | </math>,用于量化因果涌现的强度。经过理论推导和数值实验证明,在对因果涌现的判断和量化上,该理论与Eric Hoel等人提出的基于[[有效信息]](EI)的因果涌现理论具有相同的效果,且<math> |
| \Gamma_{\alpha} | | \Gamma_{\alpha} |
− | </math>和EI在多个方面存在联系。此外,该理论还提出了基于奇异值分解(SVD)的新粗粒化策略,并通过实验证明了该方法的有效性。 | + | </math>和EI在多个方面存在联系。此外,该理论还提出了基于[[奇异值分解]](SVD)的新粗粒化策略,并通过实验证明了该方法的有效性。 |
| | | |
| =简介= | | =简介= |
| Erik Hoel的因果涌现理论存在着需要指定粗粒化策略的问题,Rosas的信息分解理论并没有完全解决,因此,[[张江]]等人进一步提出了<ref name=":2">Zhang J, Tao R, Yuan B. Dynamical Reversibility and A New Theory of Causal Emergence. arXiv preprint arXiv:2402.15054. 2024 Feb 23.</ref>基于奇异值分解和动力学近似可逆性的因果涌现理论。 | | Erik Hoel的因果涌现理论存在着需要指定粗粒化策略的问题,Rosas的信息分解理论并没有完全解决,因此,[[张江]]等人进一步提出了<ref name=":2">Zhang J, Tao R, Yuan B. Dynamical Reversibility and A New Theory of Causal Emergence. arXiv preprint arXiv:2402.15054. 2024 Feb 23.</ref>基于奇异值分解和动力学近似可逆性的因果涌现理论。 |
| | | |
− | 给定一个系统的马尔科夫转移矩阵<math>P</math>,我们可以对它进行[[奇异值分解]],得到两个正交且归一化矩阵<math>U</math>和<math>V</math>,和一个对角阵<math>\Sigma</math>:<math>P= U\Sigma V^T</math>,其中[math]\Sigma=diag(\sigma_1,\sigma_2,\cdots,\sigma_N)[/math],其中[math]\sigma_1\geq\sigma_2\geq\cdots\sigma_N[/math]为<math>P</math>的奇异值,并且按照从大到小的顺序排列,<math>N</math>为<math>P</math>的状态数量。 | + | 给定一个系统的马尔科夫转移矩阵<math>P</math>,我们可以对它进行奇异值分解,得到两个正交且归一化矩阵<math>U</math>和<math>V</math>,和一个对角阵<math>\Sigma</math>:<math>P= U\Sigma V^T</math>,其中[math]\Sigma=diag(\sigma_1,\sigma_2,\cdots,\sigma_N)[/math],其中[math]\sigma_1\geq\sigma_2\geq\cdots\sigma_N[/math]为<math>P</math>的奇异值,并且按照从大到小的顺序排列,<math>N</math>为<math>P</math>的状态数量。 |
| | | |
| 我们可以将奇异值的<math>\alpha</math>次方之和定义为马尔科夫动力学的近似可逆性度量,即: | | 我们可以将奇异值的<math>\alpha</math>次方之和定义为马尔科夫动力学的近似可逆性度量,即: |
第25行: |
第25行: |
| 而且,在一定程度上可以用[math]\Gamma_{\alpha}[/math]替代EI对马尔科夫链的因果效应程度进行度量。 | | 而且,在一定程度上可以用[math]\Gamma_{\alpha}[/math]替代EI对马尔科夫链的因果效应程度进行度量。 |
| | | |
− | 如果<math>P</math>的秩为<math>r</math>,即从第<math>r+1</math>个奇异值开始,奇异值都为0,则我们称动力学<math>P</math>存在着'''清晰的因果涌现'''(Clear Causal Emergence),并且因果涌现的数值为:<math> | + | 如果<math>P</math>的秩为<math>r</math>,即从第<math>r+1</math>个奇异值开始,奇异值都为0,则我们称动力学<math>P</math>存在着'''清晰因果涌现'''(Clear Causal Emergence),并且因果涌现的数值为:<math> |
| \Delta \Gamma_{\alpha} = \Gamma_{\alpha}(1/r-1/N) | | \Delta \Gamma_{\alpha} = \Gamma_{\alpha}(1/r-1/N) |
| </math> | | </math> |
| | | |
− | 如果矩阵<math>P</math>满秩,但是对于任意给定的小数<math>\epsilon</math>,存在<math>r_{\epsilon}</math>,使得从<math>r_{\epsilon}+1</math>开始,所有的奇异值都小于<math>\epsilon</math>,则称系统存在着程度的'''模糊的因果涌现'''(Vague Causal Emergence),且因果涌现的数值为:<math>\Delta \Gamma_{\alpha}(\epsilon) = \frac{\sum_{i=1}^{r} \sigma_{i}^{\alpha}}{r} - \frac{\sum_{i=1}^{N} \sigma_{i}^{\alpha}}{N} </math> | + | 如果矩阵<math>P</math>满秩,但是对于任意给定的小数<math>\epsilon</math>,存在<math>r_{\epsilon}</math>,使得从<math>r_{\epsilon}+1</math>开始,所有的奇异值都小于<math>\epsilon</math>,则称系统存在着程度的'''模糊因果涌现'''(Vague Causal Emergence),且因果涌现的数值为:<math>\Delta \Gamma_{\alpha}(\epsilon) = \frac{\sum_{i=1}^{r} \sigma_{i}^{\alpha}}{r} - \frac{\sum_{i=1}^{N} \sigma_{i}^{\alpha}}{N} </math> |
| | | |
| 总结来看,该定量化因果涌现的方法的好处在于,它可以不依赖于具体的粗粒化策略,因而可以更加客观地量化因果涌现。该方法的缺点是,若要计算[math]\Gamma_{\alpha}[/math],需要事先对P进行[[SVD分解]],因而计算复杂度为[math]O(N^3)[/math],因而比<math>EI</math>的计算复杂度高。而且,[math]\Gamma_{\alpha}[/math]不能显式地分解为确定度和简并度两个分量。 | | 总结来看,该定量化因果涌现的方法的好处在于,它可以不依赖于具体的粗粒化策略,因而可以更加客观地量化因果涌现。该方法的缺点是,若要计算[math]\Gamma_{\alpha}[/math],需要事先对P进行[[SVD分解]],因而计算复杂度为[math]O(N^3)[/math],因而比<math>EI</math>的计算复杂度高。而且,[math]\Gamma_{\alpha}[/math]不能显式地分解为确定度和简并度两个分量。 |
第130行: |
第130行: |
| </math>确定<ref name="Zhangjiang">Zhang, Jiang, Ruyi Tao, and Bing Yuan. "Dynamical Reversibility and A New Theory of Causal Emergence." arXiv preprint arXiv:2402.15054 (2024).</ref>。 | | </math>确定<ref name="Zhangjiang">Zhang, Jiang, Ruyi Tao, and Bing Yuan. "Dynamical Reversibility and A New Theory of Causal Emergence." arXiv preprint arXiv:2402.15054 (2024).</ref>。 |
| | | |
− | ===决定性和简并性=== | + | ===确定性和简并性=== |
| 通过调整参数<math> | | 通过调整参数<math> |
| \alpha\in(0,2) | | \alpha\in(0,2) |