更改

跳到导航 跳到搜索
添加475字节 、 2024年8月31日 (星期六)
第143行: 第143行:  
=NIS机器学习框架=
 
=NIS机器学习框架=
   −
NIS是一种新的机器学习框架,基于可逆神经网络来解决式6中提出的问题。其由三个组件组成:编码器、动力学学习器和解码器。它们分别用神经网络 <math>\psi_\alpha , f_\beta ,</math> 和<math>\psi_\alpha^{-1}</math> 表示,其中这些神经网络的参数分别为<math>\alpha, \beta</math> 和<math>\alpha</math> 。整个框架如图1所示。接下来将分别描述每个模块。
+
NIS是一种新的机器学习框架,基于可逆神经网络来解决式6中提出的问题。该框架由三个组件组成:编码器、动力学学习器和解码器。它们分别用神经网络 <math>\psi_\alpha , f_\beta ,</math> 和<math>\psi_\alpha^{-1}</math> 来实现,其中这些神经网络的参数分别为<math>\alpha, \beta</math> 和<math>\alpha</math> 。整个框架如图1所示。接下来将分别描述每个模块。
   −
[[文件:NIS Graph 1.png|600px|经信息� 神经信息压缩器的工作流程和框架。]]
+
[[文件:NIS Graph 1.png|600px|神经信息压缩器的工作流程和框架。]]
    
==编码器==
 
==编码器==
==='''投影操作'''===
+
首先,编码器又是由可逆函数[math]\psi[/math]与投影操作[math]\chi[/math]两部分构成。
 +
===[math]\psi[/math]===
 +
 
 +
这里[math]\psi[/math]是一个从<math>\mathcal{R}^p</math> 到 <math>\mathcal{R}^p</math>的可逆函数,它建模了粗粒化过程中,信息转换的操作。由于函数是可逆的,因此,这一步仅仅做信息转换,而不损失任何信息。
 +
 
 +
===投影操作===
 
投影算子<math>\chi_{p,q}</math> 是一个从<math>\mathcal{R}^p</math> 到 <math>\mathcal{R}^q</math>的函数,表达为
 
投影算子<math>\chi_{p,q}</math> 是一个从<math>\mathcal{R}^p</math> 到 <math>\mathcal{R}^q</math>的函数,表达为
 
{{NumBlk|:|<blockquote><math>\chi_{p,q}(\mathbf{x}_q \bigoplus \mathbf{x}_{p-q}) = \mathbf{x}_q,</math></blockquote>|{{EquationNote|7}}}}
 
{{NumBlk|:|<blockquote><math>\chi_{p,q}(\mathbf{x}_q \bigoplus \mathbf{x}_{p-q}) = \mathbf{x}_q,</math></blockquote>|{{EquationNote|7}}}}
其中<math>\bigoplus</math> 是向量拼接(concatenate)算符,<math>\chi_q \in \mathcal{R}^q , \chi_{p-q} \in \mathcal{R}^{p-q}</math>。 <math>\chi_p,q</math>可简写为<math>\chi_q</math>. 这样,编码器<math>(\phi)</math>将微观状态<math>\mathbf{x}_t</math>映射到宏观状态<math>\mathbf{y}_t</math>,分为两个步骤:
+
其中<math>\bigoplus</math> 是向量拼接(concatenate)算符,<math>\chi_q \in \mathcal{R}^q , \chi_{p-q} \in \mathcal{R}^{p-q}</math>。 <math>\chi_p,q</math>可简写为<math>\chi_q</math>
 +
 
 +
投影算子则建模了粗粒化过程中的信息丢失的运算。
 +
 
 +
===合成===
 +
 
 +
这样,编码器<math>(\phi)</math>将微观状态<math>\mathbf{x}_t</math>映射到宏观状态<math>\mathbf{y}_t</math>,分为两个步骤:
 
{{NumBlk|:|<blockquote><math>\phi_q=\chi_q \circ \psi_\alpha</math></blockquote>|{{EquationNote|8}}}}
 
{{NumBlk|:|<blockquote><math>\phi_q=\chi_q \circ \psi_\alpha</math></blockquote>|{{EquationNote|8}}}}
 
其中<math>\circ</math>表示函数复合运算。
 
其中<math>\circ</math>表示函数复合运算。
786

个编辑

导航菜单